

The economic interfaces to the process

The wide range of digital I/O modules offers optimum adaptability

■ Economic: The modular structure means that it is only necessary to include (and pay for) those functions that are actually required for a specific application.

■ Flexible: All modules of the I/O level can be plugged onto any preferred point on the bus and are easy to exchange.
■ Functional security: Guaranteed by their robust design and excellent reliability (average field failure rate FFR $>10^{6}$ hours).

■ Time saved in electrical wiring: Due to plug-in screw terminals, spring terminals or ready-made cable variants and ribbon terminal adapters.

Overview of digital input/output modules

Type	Total I/Os	Input voltage	Breaking capacity DC	AC	Input filter	Electrical isolation	Current draw ${ }^{1}$)
PCD2.E110	81	15...30 VDC ${ }^{2}$			8 ms	no	typ. 12 mA
PCD2.E111	81	15...30VDC ${ }^{2}$)			0.2 ms	no	typ. 12 mA
PCD2.E160/.. 5	161	15...30VDC			8 ms	no	typ. 50 mA
PCD2.E161/.. 6	161	15...30VDC			0.2 ms	no	typ. 50 mA
PCD2.E610	81	15...30VDC ${ }^{3}$			10 ms	yes	typ. 12 mA
PCD2.E611	81	15...30VDC ${ }^{3}$			1 ms	yes	typ. 12 mA
PCD2.E500	61	115...230VAC			20 ms	yes	typ. 1 mA
PCD2.B100	$\begin{aligned} & 21+20+ \\ & 41 / 0 \end{aligned}$	I: $15 \ldots . .32 \mathrm{VDC}$0 :			8 ms	no	typ. 15 mA
			0.5A/5...32 VDC			no	
PCD2.A400	80, transistor		0.5A/5...32VDC			no	typ. 15 mA
PCD2.A410	80, transistor		0.5A/5...32 VDC			yes	typ. 15 mA
PCD2.A460/.. 5	160, transistor		0.5A/10...32VDC			no ${ }^{4}$	typ. 50 mA
PCD2.A300	60, transistor		2A/10...32 VDC			no	typ. 12 mA
PCD2.A200	40, relay (make)		$2 \mathrm{~A} / 50 \mathrm{VDC}$	2A/250 VAC		yes ${ }^{5}$	typ. 10 mA
PCD2.A210	40, relay (break)		$2 \mathrm{~A} / 50 \mathrm{VDC}$	$2 \mathrm{~A} / 250 \mathrm{VAC}$		yes ${ }^{5}$	typ. 10 mA
PCD2.A220	60, relay (make)		$2 \mathrm{~A} / 50 \mathrm{VDC}$	$2 \mathrm{~A} / 250 \mathrm{VAC}$		yes	typ. 12 mA
PCD2.A250	80, relay (make)		$2 \mathrm{~A} / 50 \mathrm{VDC}$	$2 \mathrm{~A} / 48 \mathrm{VAC}$		yes	typ. 15 mA

${ }^{1)}$ Current draw from internal 5 V bus (depending on number of active input or output channels), loading capacity max. 750 mA for PCD1 and max. 1600 mA for PCD2
${ }^{2}$) Special: 5VDC, 12VDC ${ }^{3}$) Special: 5VDC, 48VDC ${ }^{4}$) with short-circuit protection ${ }^{5}$) with contact protection

Mechanical refinement of I/O level concept

Digital input modules

Input modules with 8 inputs, 24 VDC

Number of inputs	8, electrically connected 24VDC
Input voltage	(special: $5 \mathrm{VDC}, 12 \mathrm{VDC}$)
Input signal	low $-30 \ldots+5 \mathrm{~V}$
	high $15 \ldots 30 \mathrm{~V}$
Input current	6 mA per input at
	24 VDC

Current draw
internally from 5V bus typ. 12 mA (max. 24 mA)
Connection diagram

Sink operation

Source operation: switch open = signal state low, LED off
Sink operation: switch open = signal state high, LED on
PCD2.E110 Input delay typ. 8 ms (pulsed voltage possible)
PCD2.E111 Input delay typ. 0.2 ms (smoothed voltage required)

Input modules with 16 inputs, 24 VDC

Number of inputs
16, electrically connected 24VDC
low $-30 . . .+5 \mathrm{~V}$
high 15...30V
4 mA per input at 24VDC
Current draw
internally from 5V bus typ. 50 mA (max. 72 mA)
Connection diagram (ribbon cable/spring terminal block)

Source operation: switch open $=$ signal state low, LED off
Sink operation: switch open = signal state high, LED on
Connection via 34-pole ribbon cable:
PCD2.E160 Input delay typ. 8 ms (pulsed voltage possible)
PCD2.E161 Input delay typ. 0.2 ms (smoothed voltage required)
Connection via 20-pole spring terminal block:
PCD2.E165
Input delay typ. 8ms (pulsed voltage possible)
PCD2.E166 Input delay typ. 0.2 ms (smoothed voltage required)

Input modules with 8 inputs, 24 VDC, electrically isolated
$\left.\begin{array}{ll}\text { Number of inputs } \\ \text { Input voltage } & \begin{array}{l}\text { 8, electrically isolated } \\ 24 \mathrm{VDC}\end{array} \\ \text { (special: } 5 \mathrm{VDC}, 48 \mathrm{VDC} \text {) } \\ \text { low } 30 \ldots+5 \mathrm{~V} \\ \text { high } 15 \ldots 30 \mathrm{~V}\end{array}\right)$

Connection diagram

Source operation
Supply voltage min. 15 V
Input current 5 mA

Sink operation
Supply voltage min. 18 V
nput current 4 mA

Source operation: switch open = signal state low, LED off
Sink operation: switch open = signal state high, LED on

PCD2.E610 Input delay typ. 10 ms (pulsed voltage possible)
PCD2.E611 Input delay typ. 1 ms (smoothed voltage required)

Input module with 6 inputs, $115 . . .230$ VAC, electrically isolated

	Number of inputs	6, electrically isolated, source operation
	Input voltage	80...250VAC sine
	Input signal	Iow 0...40VAC
-		high 80...250VAC
27\%	Input current	6 mA at 115VAC
	(wattless current)	12 mA at 230VAC
	Input delay	typ. 20 ms
	Current draw	
	internally from 5Vbus	max. 1 mA

Connection diagram (source operation)

Switch open $=$ signal state low, LED off

PCD2.E500 Input module with 6 inputs 115...230VAC

Transistor output modules

Transistor output module with 8 outputs, 0.5 A/24VDC

Output transmitting (set) $=$ LED on
PCD2.A400 Transistor output module with 8 outputs, 24VDC/0.5A, electrically isolated

Transistor output module with 8 outputs, 0.5 A/24VDC, electrically isolated

Number of outputs	8, electrically isolated Output current I_{a}
$5 \ldots .500 \mathrm{~mA}$	
Overall power	4 A at continuous duty
	(per module)
Voltage range U_{a}	$5 \ldots . .32 \mathrm{VDC}$ smoothed
	$10 . .25 \mathrm{VDC}$ pulsed Voltage drop
max. 0.4 V at 0.5 A	
Output delay	max. $10 \mu \mathrm{~s}$ (on)
	max. $500 \mu \mathrm{~s}$ (off)

Current draw
internally from 5V bus typ. 15 mA (max. 24 mA)
Connection diagram (source operation)

Output transmitting (set) $=$ LED on
PCD2.A410 Transistor output module with 8 outputs, 24VDC/0.5A, electrically isolated

Transistor output modules with 16 outputs, 0.5A/24 VDC

| Number of outputs | 16, |
| :--- | :--- | :--- |
| electrically connected | |

Connection diagram with ribbon connector and spring terminal block (source operation)

Output state indicated by trichromatic LED
PCD2.A460 Connection via 34-pole ribbon connector PCD2.A465 Connection via 20-pole spring terminal block

Transistor output module with 6 outputs, 2 A/24VDC

Relay output modules

Relay output module with 4 "make" contacts, $2 \mathrm{~A} / 250$ VAC or $2 \mathrm{~A} / 50$ VDC

Number of outputs
Rupturing capacity

4, electrically isolated "make" contacts, protected
2A, 250VAC AC1
1A, 250VAC AC11 2A, 50VDC DC1
1A, 24VDC DC11
VDR and RC
24VDC, smoothed or pulsed
typ. 5 ms at 24VDC
Output delay
Current draw
internally from 5Vbus typ. 10 mA (max. 15 mA) externally

8 mA per relay
Connection diagram

Relay excited (contact closed) $=$ LED on
PCD2.A200 Relay output module with 4 "make" contacts, $2 \mathrm{~A} / 250 \mathrm{VAC}$ or $2 \mathrm{~A} / 50 \mathrm{VDC}$

Relay output module with 4 "break" contacts, $2 \mathrm{~A} / 250$ VAC or $2 \mathrm{~A} / 50 \mathrm{VDC}$

Contact protection Supply voltage

Output delay Current draw internally from 5V bus typ. 10 mA (max. 15 mA) externally

9 mA per relay
Connection diagram

Relay excited (contact closed) $=$ LED on
PCD2.A210 Relay output module with 4 "break" contacts, 2 A/250VAC or $2 A / 50 V D C$
"break" contacts, protected
2A, 250VAC AC1
1A, 250VAC AC11
2A, 50VDC DC1
1A, 24VDC DC11
VDR and RC
24VDC, smoothed or pulsed
typ. 5 ms at 24 VDC

Relay output module with 6 "make" contacts, 2 A/250 VAC or 2 A/50 VDC

Number of outputs

6 "make" contacts in 2 groups
Rupturing capacity $2 \mathrm{~A}, 250$ VAC AC1 1A, 250VAC AC11 2A, 50VDC DC1 1A, 24VDC DC11 24VDC, smoothed or pulsed typ. 5 ms at 24VDC
Output delay
Current draw
internally from 5V bus typ. 12 mA (max. 20 mA) externally

8 mA per relay
Connection diagram

Relay excited (contact closed) = LED on
PCD2.A220 Relay output module with 6 "make" contacts, $2 \mathrm{~A} / 250 \mathrm{VAC}$ or $2 \mathrm{~A} / 50 \mathrm{VDC}$

Relay output module with 8 "make" contacts, 2 A/48 VAC or $2 \mathrm{~A} / 50 \mathrm{VDC}$

Number of outputs
8 "make" contacts in 2 groups

	2 groups
Rupturing capacity	2A, 48VAC AC1
	1A, 48VAC AC11
	2A, 50VDC DC1
	1A, 24VDC DC11
Supply voltage	24VDC, smoothed or pulsed
Output delay	typ. 5 ms at 24VDC

Current draw
internally from 5V bus typ. 15 mA (max. 25 mA) externally $\quad 8 \mathrm{~mA}$ per relay

Connection diagram

Relay excited (contact closed) $=$ LED on
The compact construction does not allow safety distances for 230 VAC to be maintained.

PCD2.A250 Relay output module with 8 "make" contacts, $2 \mathrm{~A} / 48 \mathrm{VAC}$ or $2 \mathrm{~A} / 50 \mathrm{VDC}$

Combined input/output module Counting and measuring module

Combined input/output module

with 2 inputs, $24 \mathrm{~V} / 8 \mathrm{~ms}$ for source operation, electrically connected, and 2 transistor outputs $0.5 \mathrm{~A} / 5 \ldots 32 \mathrm{VDC}$, electrically connected, not short-circuit proof, plus 4 combined input/outputs $24 \mathrm{~V} / 8 \mathrm{~ms}$ or $0.5 \mathrm{~A} / 5 \ldots 32 \mathrm{VDC}$ on common I/O terminals.

Number of inputs
Input voltage
Input signal
E0 and E1
E/A2...E/A5
Input current
Input delay

Number of outputs

Output current I_{a}
Overall power
Voltage range U_{a}
Voltage drop
for A6 and A7
for E/A2...E/A5
Output delay
max. 0.3 V at 0.5 A max. 0.7 V at 0.5 A typ. $50 \mu \mathrm{~s}$ or max. $100 \mu \mathrm{~s}$ (off)
Current draw
internally from 5 V bus typ. 15 mA (max. 25 mA)
Connection diagram (source operation)

Regarding inputs:
Switch open = signal state low, LED off
Regarding outputs:
Output transmitting (set) $=$ LED on

PCD2.B100 Combined input/output module with 2 inputs, 2 transistor outputs and 4 selectable inputs or outputs

PCD2.H100: Counting module up to 20 kHz

Its two counting inputs A and B, plus the fast CCO (counter controlled output), simplify the capture and control of revolutions, distances, volumes, etc.

Technical data

Counting frequency max. 20kHz (impulse/pause ratio 50\%)
Counting range $0 . .65535$ (16 bit), series connection possible with CPU counters
Inputs IN-A and IN-B with recognition of rotational direction
Input signals $24 \mathrm{VDC}(\mathrm{L}=-30 \ldots+5 \mathrm{~V}, \mathrm{H}=+15 \ldots 30 \mathrm{~V})$, in source operation
Input current
Output
typ. 7.5 mA
CCO (Counter Controlled Output)
Switching capacity $5 . . .500 \mathrm{~mA}$ at $5 \ldots 32 \mathrm{VDC}$
Circuit type galvanically connected, not shortcircuit protected, positive switching typ. 2 V at 500 mA

PCD2.H110: Counting and measuring module up to 100 kHz

for counting and measurement of frequencies and period or pulse length.

The ..H110 counting and measuring module uses a modern FPGA component (field programmable gate array), which can also be programmed for other specific OEM tasks by means of plug-in PROM. For this purpose, 4 inputs, 4 outputs and 2×4 LEDs are provided to the outside.

Main characteristics

- Up to 12 PCD2.H110 modules in parallel operation can be inserted in one PCD2, or up to 4 in one PCD1.
- Counting and measuring functions can be utilized simultaneously in the same module.
- As a counting module
- Counting frequency up to 100 kHz
- Counting range 0... 16777215 (24bit)
- Preset value 0... 16777215 (24bit)
- Up or down counting to preset value
- 2 digital inputs A and B with recognition of rotational direction
- 1 direct counter output CCO
- Selectable counting modes $\times 1, \times 2, \times 4$
- For frequency measurement
- Frequency range 500 Hz to 100 kHz
- Measurement range 0... 65535 (16bit)
- Accuracy $\geq 1 \%$ (depending on measurement time)
- The fast TCO output can be used at the end of a measurement, e. g. to trigger an interrupt.
- To measure period or pulse length
- Frequency range 0.27 mHz to 500 Hz
- Period or pulse lengths from 2 ms to 1 h
- The fast TCO output can be used at the end of a measurement, e. g. to trigger an interrupt.
- Special OEM versions allow use of up to 4 digital inputs and 4 digital outputs.

Electrical connection of I/O modules

All I/O modules have plug-in terminal connection blocks as standard. These allow modules to be exchanged without undoing the connections. Other types of connection are also available.

Standard connection via screw terminals

The majority of I/O modules have screw terminal blocks for connecting wires up to $1.5 \mathrm{~mm}^{2}$ or $2 \times 0.5 \mathrm{~mm}^{2}$.

Standard connection of modules with $16 \mathrm{I} / 0 \mathrm{~s}$

Types with a spring terminal block take max. $1 \times 0.5 \mathrm{~mm}^{2}$ connection wires. Standard, 34-pole ribbon cable connectors will fit on types with a ribbon connector.

Spring terminals as an option for PCD2.M170/..M177

A spring terminal block (item number: $4^{\prime} 405^{\prime} 4914^{\prime} 0$), which can be attached in place of the screw terminal block, is available for all 10-pole I/O modules. The terminals take connecting wires of $1.5 \mathrm{~mm}^{2}$ solid or $1 \mathrm{~mm}^{2}$ fine-strand. On request, the relevant modules can also be supplied ready assembled (Indicate on order: "with spring terminal block").

Plug-on system cable with connector at PCD end

The route to quick, convenient connection includes this preassembled cable. At the PCD end of the cable the connector is ready mounted, so connection is just a matter of plugging it in. More information can be obtained from documentation 26/326.

PCD2.K221, length $1.5 \mathrm{~m} /$ PCD2.K223, length 3.0 m
For digital I/O modules with 16 inputs or 16 outputs and 34-pole ribbon connector

Sheathed, round cable with 32 strands of $0.25 \mathrm{~mm}^{2}$ (AWG 24)
34-pole ribbon connector at PCD end, free ends on process side, 100 mm , unsheathed, strands with colour code

PCD2.K261, length $1.5 \mathrm{~m} /$ PCD2.K263, length 3.0 m
For digital I/O modules with 10-pole, plug-in screw terminal blocks (remove existing terminal block)

Sheathed, round cable with 10 strands of $0.5 \mathrm{~mm}^{2}$
10-pole, plug-in screw terminal block at PCD end, free ends on process side, unsheathed for 100 mm , with numbered strands

PCD2.K281, length $1.5 \mathrm{~m} /$ PCD2.K283, length 3.0 m
For ..A250 relayoutputmodulewith 8relays and 14-pole, plugin screw terminal block (remove existing terminal block)

Sheathed, round cable with 14 strands of $0.5 \mathrm{~mm}^{2}$
14-pole, plug-in screw terminal block at PCD end, free ends on process side, unsheathed for 100 mm , with numbered strands

Ordering information

Type	Description	Weight
	Digital input modules	
	with 8 inputs, 24 VDC	
PCD2.E110	Input delay typ. 8 ms (pulsed voltage possible)	35 g
PCD2.E111	Input delay typ. 0.2 ms (smoothed voltage required)	35 g
	with 16 inputs, 24 VDC	
	Connection via 34-pole ribbon connector:	
PCD2.E160	Input delay typ. 8 ms (pulsed voltage possible)	25g
PCD2.E161	Input delay typ. 0.2 ms (smoothed voltage required)	25 g
	Connection via 20-pole spring terminal block:	
PCD2.E165	Input delay typ. 8 ms (pulsed voltage possible)	30g
PCD2.E166	Input delay typ. 0.2 ms (smoothed voltage required)	30 g
	with 8 inputs, 24 VDC , electrically isolated	
PCD2.E610	Input delay typ. 10 ms (pulsed voltage possible)	40g
PCD2.E611	Input delay typ. 1 ms (smoothed voltage required)	40g
PCD2.E500	with 6 inputs, 115... 230 VAC	55 g
	Transistor output modules	
PCD2.A400	with 8 outputs, $24 \mathrm{VDC} / 0.5 \mathrm{~A}$	40g
PCD2.A410	with 8 outputs, $24 \mathrm{VDC} / 0.5 \mathrm{~A}$, electrically isolated	40 g
	with 16 outputs, $0.5 \mathrm{~A} / 24 \mathrm{VDC}$	
PCD2.A460	Connection via 34-pole ribbon connector	30 g
PCD2.A465	Connection via 20 -pole spring terminal block	35 g
PCD2.A300	with 6 outputs, $24 \mathrm{VDC} / 2 \mathrm{~A}$	45 g
	Relay output modules	
PCD2.A200	with 4 "make" contacts, $2 \mathrm{~A} / 250 \mathrm{VAC}$ or $2 \mathrm{~A} / 50 \mathrm{VDC}$	60 g
PCD2.A210	with 4 "break" contacts, 2A/250 VAC or 2 A/50VDC	60 g
PCD2.A220	with 6 "make" contacts, $2 \mathrm{~A} / 250$ VAC or $2 \mathrm{~A} / 50 \mathrm{VDC}$	65 g
PCD2.A250	with 8 "make" contacts, $2 \mathrm{~A} / 48 \mathrm{VAC}$ or $2 \mathrm{~A} / 50 \mathrm{VDC}$	65 g
PCD2.B100	Combined input/output module with 2 inputs, 2 transistor outputs and 4 selectable inputs or outputs	45 g
PCD2.H100	Counting module up to 20 kHz	45 g
PCD2.H110	Counting and measuring module up to 100 kHz	45 g
4'405'4914'0	Spring terminal block as accessory with 10 terminals, only for use on PCD2.M 170/..M177 base units, can be inserted in place of standard screw terminal blocks ${ }^{1}$)	12 g
	Plug-in screw terminal blocks (replacement)	
4'405'4847'0	with 10 terminals (standard)	17 g
4'405'4869'0	with 14 terminals (for ..A250)	9 g

[^0]Saia-Burgess Controls Ltd.
Bahnhofstrasse 18
CH-3280 Murten / Switzerland
Telephone ++41 266727111
Telefax ++41266704443
E-mail: pcdQsaia-burgess.com
Homepage: www.saia-burgess.com
Support: www.sbc-support.ch

Saia-Burgess Controls Kft.
Liget utca 1
H-2040 Budaörs
Telephone 023/501 170
Telefax 023/501180
E-mail: officeßsaia-burgess.hu
Homepage: www.saia-burgess.hu
Support: www.sbc-support.ch

Your local contact:

[^0]: ${ }^{1}$) On request, the relevant modules can also be supplied ready assembled (Indicate on order: "with spring terminal block")

