Inversor de Frequência Controle Vetorial "Sensorless"

Serie CHE Manual de Operação

- Obrigado por adquirir o Inversor de Frequência de controle vetorial Sensorless
- Antes de usá-lo, por favor, leia todo o manual para certificar-se do uso apropriado. Mantenha este manual em um local de fácil acesso para ser consultado a qualquer momento

Precauções de Segurança

Por favor, leia este manual de operação cuidadosamente antes da instalação, uso, manutenção ou inspeção do produto.

Neste manual, as precauções de segurança foram divididas em "ADVERTÊNCIA" ou "CUIDADO".

ADVERTÊNCIA Indica uma situação altamente perigosa, que se não puder ser evitada resultará em morte ou lesão séria.

CUIDADO Indica uma situação altamente perigosa, que se não puder ser evitada causará pequenas lesões ou danos ao equipamento. Este símbolo também é usado para alertá-lo de qualquer operação de risco.

Em alguns casos, mesmo quando o símbolo usado for "CUIDADO", pode-se esperar acidentes sérios. Por favor, siga essas precauções importantes em qualquer situação.

NOTA indica a operação necessária para certificar-se do uso correto do equipamento.

Os símbolos de ADVERTÊNCIA estão localizados na parte frontal do inversor.

Por favor, siga as indicações abaixo quando usar o inversor.

ADVERTÊNCIA

- Pode causar lesão ou choque elétrico
- Por favor, siga as instruções do manual antes de instalar ou usar o equipamento.
- Desconecte todos os fios elétricos antes de abrir a tampa frontal do inversor. Aguarde no mínimo 1 minuto até que os capacitores do barramento DC sejam descarregados
- Use técnicas de aterramento apropriadas
- Nunca conecte alimentação AC ao terminal de saída UVW

ÍNDICE

ÍNDICE	III
LISTA DE FIGURAS	V
1. INTRODUÇÃO	1
1.1 Especificações técnicas	
1.2 Descrição da placa de identificação	
1.3 Guia de seleção	
1.4 Descrição de pecas	
1.5 Dimensões externas	6
2. INSPEÇÃO	9
3. INSTALAÇÃO	
3.1 Requisitos de Ambiente de Trabalho	
3.1.1 Temperatura	11
3.1.2 Umidade	
3.1.3 Altitude	
3.1.4 Impacto e Vibração	
3.1.5 Radiação Eletromagnética	11
3.1.6 Água	11
3.1.7 Poluição do Ar	
3.1.8 Armazenamento	
3.2 Espaço de instalação	12
3.3 Dimensão do IHM	
3.4 Desmontagem	14
4. LIGAÇÃO	16
4.1 Conexão de dispositivos periféricos	17
4.2 Configuração dos terminais	18
4.2.1 Terminais do Circuito Principal	18
4.2.2 Terminais do Circuito de Controle	19
4.3 Diagrama de instalação	20
4.4 Especificação da Proteção, Cabo ,Contator e Reator	21
4.4.1 Especificação do Disjuntor, Cabo e Contator	21
4.4.2 Especificações do reator de entrada, reator de saída e reator DC	23
4.4.3 Especificação do resistor de frenagem	24
4.5 Ligação do circuito principal	25
4.5.1 Ligação dos dispositivos na entrada do circuito principal	
4.5.2 Ligação no circuito principal do inversor	26
4.5.3 Ligação do motor no circuito principal	27
4.5.4 Ligação da unidade regenerativa	27
4.5.5 Ligação comum do barramento DC	28
4.5.6 Ligação do Terra (PE)	28
4.6 Ligação do circuito de controle	28
4.6.1 Precauções	20
4.6.2 Terminals do circuito de controle	
4.6.4 Configuração da entrada analógica Al2 (descrição da Ligação)	
4.5.4.Configuração da entrada analogica Aiz (descrição da Ligação)	ऽ। २1
4.7.1 Descrição geral do filtro EMC	31
4.7.2 Especificações do filtro EMC do inversor	32
4.7.3 Instalação do EMC	32
5. OPERAÇÃO	

	5.1 Descrição da IHM	35
	5.1.1 Diagrama esquemático da IHM	35
	5.1.2 Descrição de funções das teclas	36
	5.1.3 Descrição de leds indicadores	
	5.2 Processo de operação	37
	5.2.1 Parâmetros de configuração	37
	5.2.2 Reset de falhas	38
	5.2.3 Parâmetros de auto ajuste do motor (auto-tuning)	39
	5.2.4 Configuração de password (senha)	39
	5.3 Estados de funcionamento	40
	5.3.1 Energização	
	5.3.2 Standby	
	5.3.3 Parâmetros de auto ajuste do motor	40
	5.3.4 Operação	۰۰ ۲ ۰۰
	5.3.5 Falha	4 0
	5.4 Teste Rápido	
	•	
6	DESCRIÇÃO DETALHADA DAS FUNÇÕES	42
	6.1 P 0 – Grupo – funções básicas	42
	6.2 P 1 – Controle de partida e parada (start ; stop)	50
	6.3 P 2 – Grupo de parâmetros do motor	
	6.4 P 3 – Grupo controle vetorial	55
	6.5 P 4 - Grupo Controle V/F	57
	6.6 P 5 – Terminais de entrada	
	6.7 P 6 – Terminais de saída	
	6.8 P 7 - Parâmetros da IHM	
	6.9 P 8 – Funções de otimização	73
	6.10 P 9 – Controle P.I.D.	. 77
	6.11 P A – Controle Multi-speed	82
	6.12 PB – Funções de proteção	. 83
	6.13 P C - Comunicação serial	86
	6.14 P D – Funções suplementares	
	6.15 P E - Configuração de fabrica	92
_	• •	
′	GUIA DE FALHAS	
	7.1 Falhas e soluções	93
	7.2 Soluções e Fálhas Comuns	97
8	MANUTENÇÃO	98
	8.1 Manutenção diária	
	8.2 Manutenção periódica	30 aa
	8.3 Substituição de peças	100
	8.4 Garantia	
_		
9	LISTA DAS FUNÇÕES DOS PARÂMETROS	101
	9.1Parâmetros especiais para a serie CHE 150 de inversores de alta velocidade	115
	9.2 Parâmetros mostrados na IHM (LCD)	116
1	D. PROTOCOLO DE COMUNICAÇÃO	123
•	10.1 Interfaces	
	10.2 Modos de comunicação	123
	10.2 Formata da protocolo	123
	10.3 Formato do protocolo	123
	10.5 Nota	
	10.0 INUIa	129

10.6 Checagem CRC	130 130 131 132
LISTA DE FIGURAS	
Figura 1.1 Descrição da placa de identificação	2
Figura 1.2 Peças do Inversor (15kw e abaixo)	4
Figura 1.3 Peças do Inversor (18,5KW e acima)	5
Figura 1.4 Dimensão (0.4 até 0,75 kW 1 AC 220V)	6
Figura 1.5 Dimensão (0.75 ~ 15kW)	6
Figura 1.6 Dimensão (18.5 ~110 KW)	6
Figura 1.7 Dimensão (132 ~ 315 KW)	7
Figura 1.8 Dimensão (350 ~630kW)	7
Figura 3.1 Relação entre corrente de saída e altitude	11
Figura 3.2 Espaço de segurança	. 12
Figura 3.3 Instalação de múltiplos inversores	. 12
Figura 3.4 Dimensão interna / corte do painel da IHM pequena	. 13
Figura 3.5 Dimensão externa	. 13
Figura 3.6 Desmontagem da tampa plástica	. 14
Figura 3.7 Desmontagem da tampa de metal	. 14
Figura 3.8 Gabinete do inversor aberto	. 15
Figura 4.1 Conexão dos dispositivos periféricos	. 17
Figura 4.2 Terminais do circuito principal (0.4 ~ 75 KW 1 AC 220V)	. 18
Figura 4.3 Terminais do circuito principal (1.5 ~ 2.2 KW)	. 18
Figura 4.4 Terminais do circuito principal (4.0 ~ 5.5kW)	. 18
Figura 4.5 Terminais do circuito principal (7.5 ~ 15kW)	. 18
Figura 4.6 Terminais do circuito principal (18,5 ~ 110kW)	. 18
Figura 4.7 Terminais do circuito principal (132 ~ 315kW)	. 18
Figura 4.8 Terminais do circuito principal (350 ~ 630kW)	. 18
Figura 4.9 Terminais do circuito de controle (0.4 ~ 0.75kW 1AC 220V)	. 19
Figura 4.10 Terminais do circuito de controle (15 ~ 2.2kW)	. 19
Figura 4.11 Terminais de controle (4KW e acima)	. 19
Figura 4.12 Diagrama de instalação	. 20
Figura 4.13 Ligação no circuito principal do inversor	. 26
Figura 4.14 Ligação do motor no circuito principal	. 27
Figura 4.15 Ligação da unidade regenerativa	. 28
Figura 4.16 Ligação comum do barramento DC	. 29

Figura 4.17 Configuração da entrada analógica Al2 (0.4 até 0.75 KW 1 AC)	31
Figura 5.1 Diagrama esquemático da IHM	35
Figura 5.2 Fluxograma de configuração de parâmetros	38
Figura 5.3 Teste rápido do diagrama	41
Figura 6.1 Tempos de aceleração e desaceleração	46
Figura 6.2 Efeito da freqüência portadora	47
Figura 6.3 Diagrama de partida	51
Figura 6.4 Diagrama de frenagem DC	52
Figura 6.5 Diagrama de zona morta FWD/REV	53
Figura 6.6 Diagrama ASR	56
Figura 6.7 Diagrama do Parâmetro PI	56
Figura 6.8 Diagrama de curva V/F	57
Figura 6.9 Diagrama de otimização de torque manual	58
Figura 6.10 Modo 1 de controle a 2 fios	62
Figura 6.11 Modo 2 de controle a 2 fios	62
Figura 6.12 Modo 1 de controle a 3 fios	63
Figura 6.13 Modo 2 de controle a 3 fios	63
Figura 6.14 Relação entre AI e a configuração correspondente	64
Figura 6.15 Relação entre AO e a configuração correspondente	
Figura 6.16 Diagrama de freqüência de salto	74
Figura 6.17 Diagrama de operação transversal	74
Figura 6.18 Diagrama Nível de FDT e defasagem	76
Figura 6.19 Diagrama de range de detecção de freqüência	76
Figura 6.20 Diagrama de controle PID	77
Figura 6.21 Diagrama de redução de sobre-sinal	79
Figura 6.22 Diagrama de redução da oscilação sobre-sinal	79
Figura 6.23 Diagrama de redução de ciclo longo de oscilação	80
Figura 6.24 Diagrama de redução de ciclo curto de oscilação	80
Figura 6.25 Relação entre limite de BIAS e saída de freqüência	81
Figura 6.26 Diagrama de operação Multspeed	82
Figura 6.27 Curva de proteção de sobrecarga no motor	83
Figura 6.28 Função de sobre tensão de parada	85
Figura 6.29 Função de proteção de limite de corrente	86
Figura 6.30 Significado do PC.06.	89

1. INTRODUÇÃO

a) 1.1 Especificações Técnicas

•	Entrac	las e Saídas									
		Range de tensão de entrada:	380/220V ±15%	1							
		Range de entrada de freqüência:	47~63Hz								
		Range de tensão de saída	0 ~ tensão de e	ntrada							
		Range de Freqüência de saída:	0 ~ 600 Hz								
•	Espec	cificações									
		Entrada digital programável:									
		Possui 4 terminais dos quais podem ser aceitas entradas on/off									
		Entrada analógica programável:									
		Al1 0 ~ 10 V; Al2 pode ser configurada	de 0 ~ 10 V ou c	le 0 ~ 20 mA							
		Saída de coletor aberto programável:									
		Possui terminal de saída (saída de co	letor aberto ou s	saída pulsante	de alta						
		velocidade)									
		Relê de saída: Possui um terminal de s	saída								
		Saída analógica: Possui um terminal d	_	a cuja saída po	ode ser						
	$0/4 \sim 20$ mA ou $0 \sim 10$ V , conforme escolhido.										
•	Princi	pais funções de controle									
	☐ Modo de controle: Controle vetorial "Sensorless" (SVC), controle V/F.										
	☐ Capacidade de sobrecarga:										
	60s com 150% da corrente nominal, 10s com 180% da corrente nominal;										
	_	☐ Torque de partida: 150% do torque nominal 0.5Hz (SVC).									
		Range de ajuste de velocidade: 1:100 (,								
		Precisão de velocidade +/- 0,5% da velo	ocidade máxima	(SVC)							
		Frequência Portadora									
		Fonte de referência de frequência: IHI	•	•	•						
		serial, multspeed, PID, etc. A combir	•	odos e chavea	amento						
		entre diferentes modos pode ser realiza									
		Função de controle de torque: Permite	muitipios niveis d	e torques							
		Função de controle de PID	:								
		Função de controle Multispeed: 8 veloc	idades podem se	r configuradas							
		Função de controle Transversal									
		□ Sem parada instantânea									
		Função de traçagem de velocidade: Partida suave do motor									
		Tecla QUICK/JOG : Tecla de atalho con Função automática de regulagem de te	-								
		Função de estabilização de tensão	iisau (AVK).								
		Existe até 24 proteções contra-falha:									
		Proteção contra sobre-corrente,	sobre-tensão,	sub-tensão,	cuner						
	_	aquecimento, falta de fase, sobre-carga	*	3ub-10113aU,	super						
		aquecimento, iaita de iase, sobre-carga	, 610.								

1.2 Descrição da placa de identificação

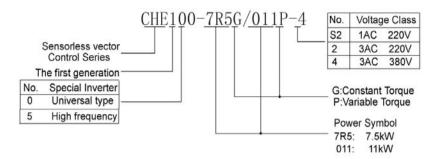


Figura 1.1 Descrição da placa de identificação.

1.3 Guia de Seleção

Modelo No.	Potência de Saída (kW)	Corrente de Entrada (A)	Corrente de saída (A)	Potência do Motor (KW)	Tamanho			
1AC 220V -15%~15%								
CHE100-0R4G-S2	0.4	5.4	2.3	0.4	Α			
CHE100-0R7G-S2	0.75	8.2	4.5	0.75	Α			
CHE100-1R5G-S2	1.5	14.2	7.0	1.5	В			
CHE100-2R2G-S2	2.2	23.0	10	2.2	В			
3AC 220V -15%~15%								
CHE100-0R7G-2	0.75	5.0	4.5	0.75	Α			
CHE100-1R5G-2	1.5	7.7	7	1.5	В			
CHE100-2R2G-2	2.2	11.0	10	2.2	В			
CHE100-004G-2	4.0	17.0	16	3.7	С			
CHE100-5R5G-2	5.5	21.0	20	5.5	С			
CHE100-7R5G-2	7.5	31.0	30	7.5	D			
CHE100-011G-2	11.0	43.0	42	11.0	Е			
CHE100-015G-2	15.0	56.0	55	15.0	Е			
CHE100-018G-2	18.5	71.0	70	18.5	Е			
CHE100-022G-2	22.0	81.0	80	22.0	F			

CHE100-030G-2 30.0 112.0 110 30.0 F CHE100-037G-2 37.0 132.0 130 37.0 F CHE100-045G-2 45.0 163.0 160 45.0 G 3AC 380V -15%-15% USAC 380V -15%-15% CHE100-0R7G-4 0.75 3.4 2.5 0.75 B CHE100-1R5G-4 1.5 5.0 3.7 1.5 B CHE100-2R2G-4 2.2 5.8 5 2.2 B CHE100-9R6G/7R5P-4 4.0/5.5 10/15 9/13 4.0/5.5 C CHE100-7R5G/011P-4 7.5/11 20/26 17/25 7.5/11 D CHE100-11G/015P-4 11/15 26/35 25/32 11/15 D CHE100-018G/022P-4 15/18.5 35/38 32/37 15/18.5 D CHE100-022G/030P-4 22/30 46/62 45/60 22/30 E CHE100-030G/037P-4 30/37 62/76 60/75 30/37 E			1	ı	ı	
CHE100-045G-2 45.0 163.0 160 45.0 G 3AC 380V – 15%~15% CHE100-0R7G-4 0.75 3.4 2.5 0.75 B CHE100-1R5G-4 1.5 5.0 3.7 1.5 B CHE100-2R2G-4 2.2 5.8 5 2.2 B CHE100-094G/5R5P-4 4.0/5.5 10/15 9/13 4.0/5.5 C CHE100-5R5G/7R5P-4 5.5/7.5 15/20 13/17 5.5/7.5 C CHE100-7R5G/011P-4 7.5/11 20/26 17/25 7.5/11 D CHE100-01IG/015P-4 11/15 26/35 25/32 11/15 D CHE100-018G/022P-4 18.5/22 38/46 37/45 18.5/22 E CHE100-022G/030P-4 22/30 46/62 45/60 22/30 E CHE100-030G/037P-4 30/37 62/76 60/75 30/37 E CHE100-037G/045P-4 37/45 76/90 75/90 37/45 F CHE100-045G/055P-4	CHE100-030G-2	30.0	112.0	110	30.0	F
AC 380V -15%-15% CHE100-0R7G-4 0.75 3.4 2.5 0.75 B CHE100-1R5G-4 1.5 5.0 3.7 1.5 B CHE100-2R2G-4 2.2 5.8 5 2.2 B CHE100-004G/5R5P-4 4.0/5.5 10/15 9/13 4.0/5.5 C CHE100-5R5G/7R5P-4 5.5/7.5 15/20 13/17 5.5/7.5 C CHE100-7R5G/011P-4 7.5/11 20/26 17/25 7.5/11 D CHE100-011G/015P-4 11/15 26/35 25/32 11/15 D CHE100-015G/018P-4 15/18.5 35/38 32/37 15/18.5 D CHE100-018G/022P-4 18.5/22 38/46 37/45 18.5/22 E CHE100-022G/030P-4 22/30 46/62 45/60 22/30 E CHE100-030G/037P-4 30/37 62/76 60/75 30/37 E CHE100-037G/045P-4 37/45 76/90 75/90 37/45 F	CHE100-037G-2	37.0	132.0	130	37.0	F
CHE100-0R7G-4 0.75 3.4 2.5 0.75 B CHE100-1R5G-4 1.5 5.0 3.7 1.5 B CHE100-2R2G-4 2.2 5.8 5 2.2 B CHE100-004G/5R5P-4 4.0/5.5 10/15 9/13 4.0/5.5 C CHE100-5R5G/7R5P-4 5.5/7.5 15/20 13/17 5.5/7.5 C CHE100-7R5G/011P-4 7.5/11 20/26 17/25 7.5/11 D CHE100-011G/015P-4 11/15 26/35 25/32 11/15 D CHE100-015G/018P-4 15/18.5 35/38 32/37 15/18.5 D CHE100-018G/022P-4 18.5/22 38/46 37/45 18.5/22 E CHE100-030G/037P-4 30/37 62/76 60/75 30/37 E CHE100-037G/045P-4 37/45 76/90 75/90 37/45 F CHE100-045G/055P-4 45/55 90/105 90/110 45/55 F CHE100-05G/075P-4 55/75	CHE100-045G-2	45.0	163.0	160	45.0	G
CHE100-1R5G-4 1.5 5.0 3.7 1.5 B CHE100-2R2G-4 2.2 5.8 5 2.2 B CHE100-004G/5R5P-4 4.0/5.5 10/15 9/13 4.0/5.5 C CHE100-5R5G/7R5P-4 5.5/7.5 15/20 13/17 5.5/7.5 C CHE100-7R5G/011P-4 7.5/11 20/26 17/25 7.5/11 D CHE100-011G/015P-4 11/15 26/35 25/32 11/15 D CHE100-015G/018P-4 15/18.5 35/38 32/37 15/18.5 D CHE100-018G/022P-4 18.5/22 38/46 37/45 18.5/22 E CHE100-022G/030P-4 22/30 46/62 45/60 22/30 E CHE100-030G/037P-4 30/37 62/76 60/75 30/37 E CHE100-037G/045P-4 37/45 76/90 75/90 37/45 F CHE100-055G/075P-4 55/75 105/140 110/150 55/75 F CHE100-090G/110P-4 90	3AC 380V -15%~15%		ı	T	T	T
CHE100-2R2G-4 2.2 5.8 5 2.2 B CHE100-004G/5R5P-4 4.0/5.5 10/15 9/13 4.0/5.5 C CHE100-5R5G/7R5P-4 5.5/7.5 15/20 13/17 5.5/7.5 C CHE100-7R5G/011P-4 7.5/11 20/26 17/25 7.5/11 D CHE100-011G/015P-4 11/15 26/35 25/32 11/15 D CHE100-015G/018P-4 15/ 18.5 35/38 32/37 15/ 18.5 D CHE100-015G/018P-4 15/ 18.5 35/38 32/37 15/ 18.5 D CHE100-018G/022P-4 18.5/ 22 38/46 37/45 18.5/ 22 E CHE100-022G/030P-4 22/30 46/62 45/60 22/30 E CHE100-037G/045P-4 30/37 62/76 60/75 30/37 E CHE100-037G/045P-4 45/55 90/105 90/110 45/55 F CHE100-055G/075P-4 55/75 105/ 140 110/ 150 55/75 F CHE100-090G/110P-4 90/110 160/ 210 176/ 210 90/110 G CHE100-110G/132P-4 110/132 210/ 240 210/ 250 110/132 G CHE100-132G/160P-4 132/160 240/ 290 250/ 300 132/160 H CHE100-185G/200P-4 185/200 330/ 370 340/ 380 185/200 H CHE100-220G/250P-4 220/250 410/ 460 415/ 470 220/250 I CHE100-250G/280P-4 250/280 460/ 500 470/ 520 250/280 I CHE100-250G/280P-4 250/280 460/ 500 470/ 520 250/280 I CHE100-250G/280P-4 250/280 460/ 500 470/ 520 250/280 I	CHE100-0R7G-4	0.75	3.4	2.5	0.75	В
CHE100-004G/5R5P-4 4.0/5.5 10/15 9/13 4.0/5.5 C CHE100-5R5G/7R5P-4 5.5/7.5 15/20 13/17 5.5/7.5 C CHE100-7R5G/011P-4 7.5/11 20/26 17/25 7.5/11 D CHE100-011G/015P-4 11/15 26/35 25/32 11/15 D CHE100-015G/018P-4 15/ 18.5 35/38 32/37 15/ 18.5 D CHE100-018G/022P-4 18.5/ 22 38/46 37/45 18.5/ 22 E CHE100-022G/030P-4 22/30 46/62 45/60 22/30 E CHE100-030G/037P-4 30/37 62/76 60/75 30/37 E CHE100-037G/045P-4 37/45 76/90 75/90 37/45 F CHE100-055G/075P-4 45/55 90/105 90/110 45/55 F CHE100-075G/090P-4 75/90 140/ 160 150/ 176 75/90 G CHE100-090G/110P-4 90/110 160/ 210 176/ 210 90/110 G CHE100-132G/160P-4 132/160 240/ 290 250/ 300 132/160 H CHE100-185G/200P-4 185/200 330/ 370 340/ 380 185/200 H CHE100-185G/200P-4 185/200 330/ 370 340/ 380 185/200 H CHE100-220G/250P-4 220/220 410/ 460 415/ 470 220/250 I CHE100-220G/250P-4 250/280 460/ 500 470/ 520 250/280 I CHE100-250G/280P-4 250/280 460/ 500 470/ 520 250/280 I CHE100-250G/280P-4 250/280 460/ 500 470/ 520 250/280 I	CHE100-1R5G-4	1.5	5.0	3.7	1.5	В
CHE100-5R5G/7R5P-4 5.5/7.5 15/20 13/17 5.5/7.5 C CHE100-7R5G/011P-4 7.5/11 20/26 17/25 7.5/11 D CHE100-011G/015P-4 11/15 26/35 25/32 11/15 D CHE100-018G/022P-4 15/18.5 35/38 32/37 15/18.5 D CHE100-018G/022P-4 18.5/22 38/46 37/45 18.5/22 E CHE100-022G/030P-4 22/30 46/62 45/60 22/30 E CHE100-030G/037P-4 30/37 62/76 60/75 30/37 E CHE100-037G/045P-4 37/45 76/90 75/90 37/45 F CHE100-045G/055P-4 45/55 90/105 90/110 45/55 F CHE100-075G/090P-4 75/90 140/160 150/176 75/90 G CHE100-090G/110P-4 90/110 160/210 176/210 90/110 G CHE100-132G/160P-4 132/160 240/290 250/300 132/160 H <	CHE100-2R2G-4	2.2	5.8	5	2.2	В
CHE100-7R5G/011P-4 7.5/11 20/26 17/25 7.5/11 D CHE100-011G/015P-4 11/15 26/35 25/32 11/15 D CHE100-015G/018P-4 15/18.5 35/38 32/37 15/18.5 D CHE100-018G/022P-4 18.5/22 38/46 37/45 18.5/22 E CHE100-022G/030P-4 22/30 46/62 45/60 22/30 E CHE100-030G/037P-4 30/37 62/76 60/75 30/37 E CHE100-037G/045P-4 37/45 76/90 75/90 37/45 F CHE100-045G/055P-4 45/55 90/105 90/110 45/55 F CHE100-055G/075P-4 55/75 105/140 110/150 55/75 F CHE100-075G/090P-4 75/90 140/160 150/176 75/90 G CHE100-110G/132P-4 110/132 210/240 210/250 110/132 G CHE100-160G/185P-4 160/185 290/330 300/340 160/185 H CHE100-185G/200P-4 185/200 330/370 340/380 185/200 H CHE100-200G/220P-4 200/220 370/410 380/415 200/220 I CHE100-220G/250P-4 220/250 410/460 415/470 220/250 I CHE100-220G/250P-4 250/280 460/500 470/520 250/280 I CHE100-280G/315P-4 280/315 500/580 520/600 280/315 I	CHE100-004G/5R5P-4	4.0/5.5	10/15	9/13	4.0/5.5	С
CHE100-011G/015P-4 11/15 26/35 25/32 11/15 D CHE100-015G/018P-4 15/ 18.5 35/38 32/37 15/ 18.5 D CHE100-018G/022P-4 18.5/ 22 38/46 37/45 18.5/ 22 E CHE100-022G/030P-4 22/30 46/62 45/60 22/30 E CHE100-030G/037P-4 30/37 62/76 60/75 30/37 E CHE100-037G/045P-4 37/45 76/90 75/90 37/45 F CHE100-045G/055P-4 45/55 90/105 90/110 45/55 F CHE100-055G/075P-4 55/75 105/ 140 110/ 150 55/75 F CHE100-075G/090P-4 75/90 140/ 160 150/ 176 75/90 G CHE100-110G/132P-4 110/132 210/ 240 210/ 250 110/132 G CHE100-132G/160P-4 132/160 240/ 290 250/ 300 132/160 H CHE100-160G/185P-4 160/185 290/ 330 300/ 340 160/185 H CHE100-185G/200P-4 185/200 330/ 370 340/ 380 185/200 H CHE100-220G/220P-4 220/220 370/ 410 380/ 415 200/220 I CHE100-220G/250P-4 250/280 460/ 500 470/ 520 250/280 I CHE100-280G/315P-4 280/315 500/ 580 520/ 600 280/315 I	CHE100-5R5G/7R5P-4	5.5/7.5	15/20	13/17	5.5/7.5	С
CHE100-015G/018P-4 15/ 18.5 35/38 32/37 15/ 18.5 D CHE100-018G/022P-4 18.5/ 22 38/46 37/45 18.5/ 22 E CHE100-022G/030P-4 22/30 46/62 45/60 22/30 E CHE100-030G/037P-4 30/37 62/76 60/75 30/37 E CHE100-037G/045P-4 37/45 76/90 75/90 37/45 F CHE100-045G/055P-4 45/55 90/105 90/110 45/55 F CHE100-055G/075P-4 55/75 105/ 140 110/ 150 55/75 F CHE100-075G/090P-4 75/90 140/ 160 150/ 176 75/90 G CHE100-090G/110P-4 90/110 160/ 210 176/ 210 90/110 G CHE100-110G/132P-4 110/132 210/ 240 210/ 250 110/132 G CHE100-132G/160P-4 132/160 240/ 290 250/ 300 132/160 H CHE100-185G/200P-4 185/200 330/ 370 340/ 380 185/200 H CHE100-200G/220P-4 200/220 370/ 410 380/ 415 200/220 I CHE100-220G/250P-4 220/250 410/ 460 415/ 470 220/250 I CHE100-250G/280P-4 250/280 460/ 500 470/ 520 250/280 I CHE100-280G/315P-4 280/315 500/ 580 520/ 600 280/315 I	CHE100-7R5G/011P-4	7.5/11	20/26	17/25	7.5/11	D
CHE100-018G/022P-4 18.5/ 22 38/46 37/45 18.5/ 22 E CHE100-022G/030P-4 22/30 46/62 45/60 22/30 E CHE100-030G/037P-4 30/37 62/76 60/75 30/37 E CHE100-037G/045P-4 37/45 76/90 75/90 37/45 F CHE100-045G/055P-4 45/55 90/105 90/110 45/55 F CHE100-055G/075P-4 55/75 105/ 140 110/ 150 55/75 F CHE100-075G/090P-4 75/90 140/ 160 150/ 176 75/90 G CHE100-090G/110P-4 90/110 160/ 210 176/ 210 90/110 G CHE100-110G/132P-4 110/132 210/ 240 210/ 250 110/132 G CHE100-132G/160P-4 132/160 240/ 290 250/ 300 132/160 H CHE100-160G/185P-4 160/185 290/ 330 300/ 340 160/185 H CHE100-185G/200P-4 185/200 330/ 370 340/ 380 185/200 H CHE100-220G/220P-4 220/220 370/ 410 380/ 415 200/220 I CHE100-250G/280P-4 250/280 460/ 500 470/ 520 250/280 I CHE100-280G/315P-4 280/315 500/ 580 520/ 600 280/315 I	CHE100-011G/015P-4	11/15	26/35	25/32	11/15	D
CHE100-022G/030P-4 22/30 46/62 45/60 22/30 E CHE100-030G/037P-4 30/37 62/76 60/75 30/37 E CHE100-037G/045P-4 37/45 76/90 75/90 37/45 F CHE100-045G/055P-4 45/55 90/105 90/110 45/55 F CHE100-055G/075P-4 55/75 105/ 140 110/ 150 55/75 F CHE100-075G/090P-4 75/90 140/ 160 150/ 176 75/90 G CHE100-090G/110P-4 90/110 160/ 210 176/ 210 90/110 G CHE100-110G/132P-4 110/132 210/ 240 210/ 250 110/132 G CHE100-132G/160P-4 132/160 240/ 290 250/ 300 132/160 H CHE100-160G/185P-4 160/185 290/ 330 300/ 340 160/185 H CHE100-200G/220P-4 200/220 370/ 410 380/ 415 200/220 I CHE100-220G/250P-4 220/250 410/ 460 415/ 470 220/250 I CHE100-250G/280P-4 250/280 460/ 500 470/ 520 250/280 I CHE100-280G/315P-4 280/315 500/ 580 520/ 600 280/315 I	CHE100-015G/018P-4	15/ 18.5	35/38	32/37	15/ 18.5	D
CHE100-030G/037P-4 30/37 62/76 60/75 30/37 E CHE100-037G/045P-4 37/45 76/90 75/90 37/45 F CHE100-045G/055P-4 45/55 90/105 90/110 45/55 F CHE100-055G/075P-4 55/75 105/140 110/150 55/75 F CHE100-075G/090P-4 75/90 140/160 150/176 75/90 G CHE100-090G/110P-4 90/110 160/210 176/210 90/110 G CHE100-110G/132P-4 110/132 210/240 210/250 110/132 G CHE100-132G/160P-4 132/160 240/290 250/300 132/160 H CHE100-185G/200P-4 185/200 330/370 340/380 185/200 H CHE100-200G/220P-4 200/220 370/410 380/415 200/220 I CHE100-250G/250P-4 220/250 410/460 415/470 220/250 I CHE100-250G/280P-4 250/280 460/500 470/520 250/280 I <td>CHE100-018G/022P-4</td> <td>18.5/ 22</td> <td>38/46</td> <td>37/45</td> <td>18.5/ 22</td> <td>Е</td>	CHE100-018G/022P-4	18.5/ 22	38/46	37/45	18.5/ 22	Е
CHE100-037G/045P-4 37/45 76/90 75/90 37/45 F CHE100-045G/055P-4 45/55 90/105 90/110 45/55 F CHE100-055G/075P-4 55/75 105/140 110/150 55/75 F CHE100-075G/090P-4 75/90 140/160 150/176 75/90 G CHE100-090G/110P-4 90/110 160/210 176/210 90/110 G CHE100-110G/132P-4 110/132 210/240 210/250 110/132 G CHE100-132G/160P-4 132/160 240/290 250/300 132/160 H CHE100-160G/185P-4 160/185 290/330 300/340 160/185 H CHE100-185G/200P-4 185/200 330/370 340/380 185/200 H CHE100-200G/220P-4 200/220 370/410 380/415 200/220 I CHE100-250G/280P-4 220/250 410/460 415/470 220/250 I CHE100-280G/315P-4 250/280 460/500 470/520 250/280 <	CHE100-022G/030P-4	22/30	46/62	45/60	22/30	Е
CHE100-045G/055P-4 45/55 90/105 90/110 45/55 F CHE100-055G/075P-4 55/75 105/140 110/150 55/75 F CHE100-075G/090P-4 75/90 140/160 150/176 75/90 G CHE100-090G/110P-4 90/110 160/210 176/210 90/110 G CHE100-110G/132P-4 110/132 210/240 210/250 110/132 G CHE100-132G/160P-4 132/160 240/290 250/300 132/160 H CHE100-160G/185P-4 160/185 290/330 300/340 160/185 H CHE100-185G/200P-4 185/200 330/370 340/380 185/200 H CHE100-200G/220P-4 200/220 370/410 380/415 200/220 I CHE100-250G/250P-4 220/250 410/460 415/470 220/250 I CHE100-250G/280P-4 250/280 460/500 470/520 250/280 I CHE100-280G/315P-4 280/315 500/580 520/600 280/315	CHE100-030G/037P-4	30/37	62/76	60/75	30/37	Е
CHE100-055G/075P-4 55/75 105/140 110/150 55/75 F CHE100-075G/090P-4 75/90 140/160 150/176 75/90 G CHE100-090G/110P-4 90/110 160/210 176/210 90/110 G CHE100-110G/132P-4 110/132 210/240 210/250 110/132 G CHE100-132G/160P-4 132/160 240/290 250/300 132/160 H CHE100-160G/185P-4 160/185 290/330 300/340 160/185 H CHE100-185G/200P-4 185/200 330/370 340/380 185/200 H CHE100-200G/220P-4 200/220 370/410 380/415 200/220 I CHE100-220G/250P-4 220/250 410/460 415/470 220/250 I CHE100-250G/280P-4 250/280 460/500 470/520 250/280 I CHE100-280G/315P-4 280/315 500/580 520/600 280/315 I	CHE100-037G/045P-4	37/45	76/90	75/90	37/45	F
CHE100-075G/090P-4 75/90 140/ 160 150/ 176 75/90 G CHE100-090G/110P-4 90/110 160/ 210 176/ 210 90/110 G CHE100-110G/132P-4 110/132 210/ 240 210/ 250 110/132 G CHE100-132G/160P-4 132/160 240/ 290 250/ 300 132/160 H CHE100-160G/185P-4 160/185 290/ 330 300/ 340 160/185 H CHE100-185G/200P-4 185/200 330/ 370 340/ 380 185/200 H CHE100-200G/220P-4 200/220 370/ 410 380/ 415 200/220 I CHE100-220G/250P-4 220/250 410/ 460 415/ 470 220/250 I CHE100-250G/280P-4 250/280 460/ 500 470/ 520 250/280 I CHE100-280G/315P-4 280/315 500/ 580 520/ 600 280/315 I	CHE100-045G/055P-4	45/55	90/105	90/110	45/55	F
CHE100-090G/110P-4 90/110 160/ 210 176/ 210 90/110 G CHE100-110G/132P-4 110/132 210/ 240 210/ 250 110/132 G CHE100-132G/160P-4 132/160 240/ 290 250/ 300 132/160 H CHE100-160G/185P-4 160/185 290/ 330 300/ 340 160/185 H CHE100-185G/200P-4 185/200 330/ 370 340/ 380 185/200 H CHE100-200G/220P-4 200/220 370/ 410 380/ 415 200/220 I CHE100-220G/250P-4 220/250 410/ 460 415/ 470 220/250 I CHE100-250G/280P-4 250/280 460/ 500 470/ 520 250/280 I CHE100-280G/315P-4 280/315 500/ 580 520/ 600 280/315 I	CHE100-055G/075P-4	55/75	105/ 140	110/ 150	55/75	F
CHE100-110G/132P-4 110/132 210/ 240 210/ 250 110/132 G CHE100-132G/160P-4 132/160 240/ 290 250/ 300 132/160 H CHE100-160G/185P-4 160/185 290/ 330 300/ 340 160/185 H CHE100-185G/200P-4 185/200 330/ 370 340/ 380 185/200 H CHE100-200G/220P-4 200/220 370/ 410 380/ 415 200/220 I CHE100-220G/250P-4 220/250 410/ 460 415/ 470 220/250 I CHE100-250G/280P-4 250/280 460/ 500 470/ 520 250/280 I CHE100-280G/315P-4 280/315 500/ 580 520/ 600 280/315 I	CHE100-075G/090P-4	75/90	140/ 160	150/ 176	75/90	G
CHE100-132G/160P-4 132/160 240/290 250/300 132/160 H CHE100-160G/185P-4 160/185 290/330 300/340 160/185 H CHE100-185G/200P-4 185/200 330/370 340/380 185/200 H CHE100-200G/220P-4 200/220 370/410 380/415 200/220 I CHE100-220G/250P-4 220/250 410/460 415/470 220/250 I CHE100-250G/280P-4 250/280 460/500 470/520 250/280 I CHE100-280G/315P-4 280/315 500/580 520/600 280/315 I	CHE100-090G/110P-4	90/110	160/ 210	176/ 210	90/110	G
CHE100-160G/185P-4 160/185 290/ 330 300/ 340 160/185 H CHE100-185G/200P-4 185/200 330/ 370 340/ 380 185/200 H CHE100-200G/220P-4 200/220 370/ 410 380/ 415 200/220 I CHE100-220G/250P-4 220/250 410/ 460 415/ 470 220/250 I CHE100-250G/280P-4 250/280 460/ 500 470/ 520 250/280 I CHE100-280G/315P-4 280/315 500/ 580 520/ 600 280/315 I	CHE100-110G/132P-4	110/132	210/ 240	210/ 250	110/132	G
CHE100-185G/200P-4 185/200 330/ 370 340/ 380 185/200 H CHE100-200G/220P-4 200/220 370/ 410 380/ 415 200/220 I CHE100-220G/250P-4 220/250 410/ 460 415/ 470 220/250 I CHE100-250G/280P-4 250/280 460/ 500 470/ 520 250/280 I CHE100-280G/315P-4 280/315 500/ 580 520/ 600 280/315 I	CHE100-132G/160P-4	132/160	240/ 290	250/ 300	132/160	Н
CHE100-200G/220P-4 200/220 370/ 410 380/ 415 200/220 I CHE100-220G/250P-4 220/250 410/ 460 415/ 470 220/250 I CHE100-250G/280P-4 250/280 460/ 500 470/ 520 250/280 I CHE100-280G/315P-4 280/315 500/ 580 520/ 600 280/315 I	CHE100-160G/185P-4	160/185	290/ 330	300/ 340	160/185	Н
CHE100-220G/250P-4 220/250 410/ 460 415/ 470 220/250 I CHE100-250G/280P-4 250/280 460/ 500 470/ 520 250/280 I CHE100-280G/315P-4 280/315 500/ 580 520/ 600 280/315 I	CHE100-185G/200P-4	185/200	330/ 370	340/ 380	185/200	Н
CHE100-250G/280P-4 250/280 460/ 500 470/ 520 250/280 I CHE100-280G/315P-4 280/315 500/ 580 520/ 600 280/315 I	CHE100-200G/220P-4	200/220	370/ 410	380/ 415	200/220	I
CHE100-280G/315P-4 280/315 500/ 580 520/ 600 280/315 I	CHE100-220G/250P-4	220/250	410/ 460	415/ 470	220/250	ı
	CHE100-250G/280P-4	250/280	460/ 500	470/ 520	250/280	ı
CHE100-315G/350P-4 315/350 580/620 600/640 315/350 I	CHE100-280G/315P-4	280/315	500/ 580	520/ 600	280/315	ı
	CHE100-315G/350P-4	315/350	580/ 620	600/ 640	315/350	I

1.4 Descrição de Peças

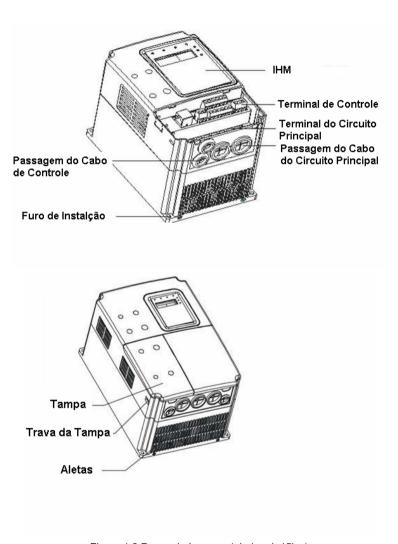
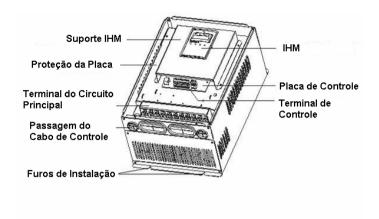



Figura 1.2 Peças do Inversor (abaixo de15kw).

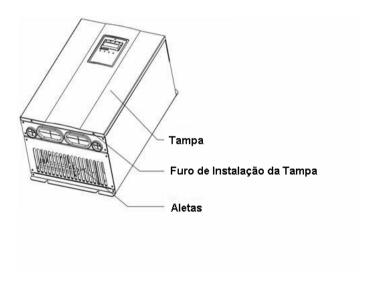


Figura 1.3 Peças do Inversor (18.5kw e acima).

1.5 Dimensões Externas

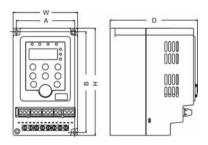


Figura 1.4 Dimensão (0.4~0.75kW 1AC 220V).

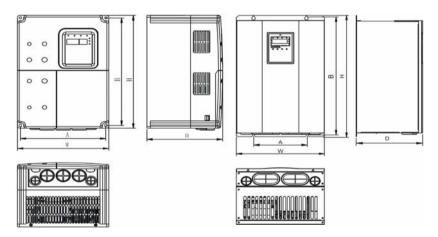


Figura 1.5 Dimensão (0.75~15kW).

Figura 1.6 Dimensão (18.5~110kW).

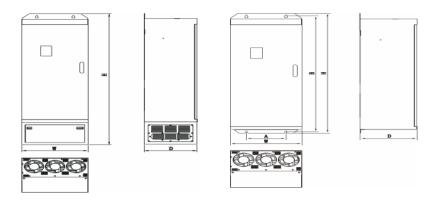


Figura 1.7 Dimensão (132~315kW).

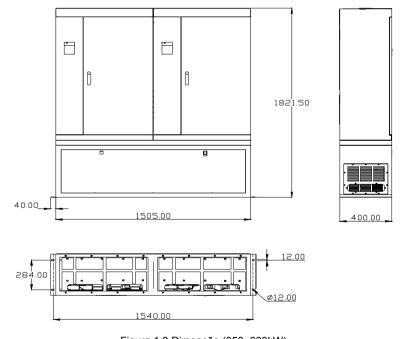


Figura 1.8 Dimensão (350~630kW).

DAKOL INSTRUMENTOS E SISTEMAS LTDA.

www.dakol.com.br info@dakol.com.br Tel: (11) 3231-4544

Potência	Tamanho	A (mm)	B (mm)	H (mm)	W (mm)	D (mm)	Furo Instalação
(kW)		_	nsão ação	Dim	ensão Ext	(mm)	
0.4~0.75 (1AC 220V)	Α	76.8	131.6	140	85	115	4
0.75~2.2	В	110.4	170.2	180	120	140	5
4~5.5	С	147.5	237.5	250	160	175	5
7.5~15	D	206	305.5	320	220	180	6.0
18.5~30	Е	176	454.5	467	290	215	6.5
37~55	F	230	564.5	577	375	270	7.0
75~110	G	320	738.5	755	460	330	9.0
132~185	H (sem base)	270	1233	1275	490	391	13.0
102 103	H (com base)		_	1490	490	391	_
200~315	I(sem base)	500	1324	1358	750	402	12.5
200 010	I(com base)	_	_	1670	750	402	_

2. INSPEÇÃO

ADVERTÊNCIA

 Não instale ou use o inversor se estiver danificado ou faltando alguma peça, caso contrario você pode se ferir.

Ao desembalar o inversor confira os itens abaixo:

- 1 Inspecione a parte exterior do inversor para certificar-se de que não há riscos ou outros danos causados durante o transporte.
- 2 Certifique-se que o manual de operações e o cartão de garantia estão na caixa.
- 3 Verifique se a placa de identificação corresponde ao seu pedido.
- 4 Certifique-se que as peças opcionais, em caso de solicitação, estão na caixa.

Por favor, entre em contato com um representante local se houver qualquer dano no inversor ou em acessórios opcionais.

3. INSTALAÇÃO

Advertência

- Se uma pessoa sem treinamento manipular o dispositivo ou violar qualquer regra de atenção, poderá sofrer lesão séria ou perda total do equipamento. Só é permitido a operação do equipamento por pessoas devidamente treinadas, qualificadas e certificadas.
- O cabo de alimentação de entrada deve ser bem conectado e o equipamento deve ser aterrado com segurança.
- Mesmo se o inversor não estiver em funcionamento os seguintes terminais poderão estar energizados:

Terminal de alimentação: R, S, T

Terminais de conexão do motor: U, V, W

- Quando desligado, o inversor não deve ser instalado antes de 5 minutos, o que garante que o dispositivo estará descarregado completamente.
- A bitola do condutor de aterramento não deve ser menor do que a do cabo de alimentação

- Quando movimentar o inversor, por favor, levante-o pela base e não pelo painel.
- Caso contrário ele pode cair e causar dano físico.
- Instale o inversor sobre material a prova de fogo (tal como metal) para prevenir incêndio
- Quando precisar instalar um ou mais inversores em um único gabinete, deve-se instalar um ventilador para manter a temperatura abaixo de 45°C. Caso contrário poderá causar incêndio ou danificar o dispositivo.

3.1 Requisitos de Ambiente de Trabalho

3.1.1 Temperatura

A variação de temperatura ambiente: -10°C ~ +40°C. O inversor sofrerá danos se a temperatura exceder 40°C.

3.1.2 Umidade

O inversor deve ser instalado em local com umidade abaixo de 95% RH

3.1.3 Altitude

A eficiência do inversor será de 100% quando instalado em altitude inferior a 1000m. E perderá a eficiência se instalado em altitude superior a 1000m. Para mais detalhes, por favor, analisar o gráfico abaixo:

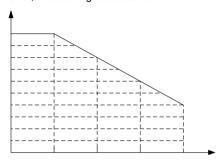


Figura 3.1 Relação entre corrente de saída e altitude.

3.1.4 Impacto e vibração

I out

Não é permitido que o inversor caia, sofra grande impacto, ou seja, instalado em locais onde haja freqüentes vibrações.

3.1.5 Radiação Eletromagnética

100%

Manter distante de fonte de radiação eletromagnética.

3.1.6 Água

Não instalar o inversor em lugares impróprios ou exposições sereno.

3.1.7 Poluição do Ar

Manter longe de poluição tais como poeira, gás corrosivo.

3.1.8 Armazenamento

Não guarde o inversor em ambiente exposto diretamente à luz do sol, vapor, neblina de óleo e vibração. 40%

DAKOL INSTRUMENTOS E SISTEMAS LTDA.

www.dakol.com.br info@dakol.com.br Tel: (11) 3231-4544

3.2 Espaço de Instalação

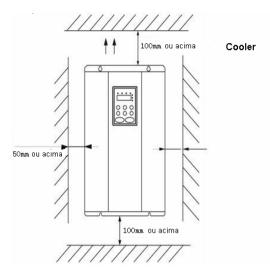


Figura 3.2 Espaço de Segurança

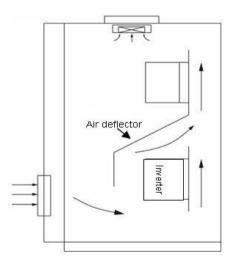


Figura 3.3 Instalação de múltiplos inversores .

3.3 Dimensão do IHM

Figura 3.4 Dimensão interna /corte do painel

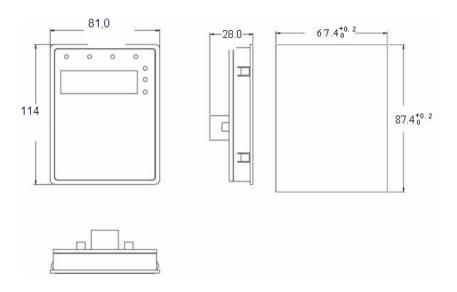


Figura 3.5 Dimensão externa.

3.4 Desmontagem

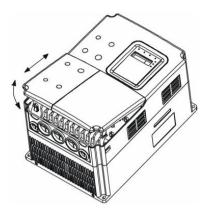


Figura 3.6 Desmontagem da tampa plástica.

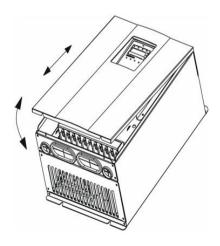


Figura 3.7 Desmontagem da tampa de metal.

14

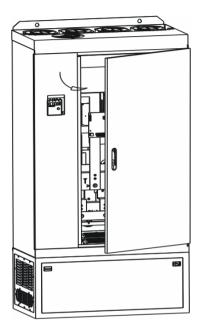


Figura 3.8 Gabinete do inversor aberto

4. LIGAÇÃO

Advertência

- A instalação deve ser feita por um profissional da área elétrica.
- Proibido testar a isolação do cabo que conecta o inversor usando dispositivo de teste de isolação que gere alta tensão.
- Instalar o inversor 5 minutos após a alimentação estar desligada, e o mesmo completamente descarregado.
- Certifique-se que o terminal terra esteja ligado em local aterramento adequado.
- (classe 200V: A resistência do terra deve ser 100 Ω ou menor, classe 400V: A resistência do terra deve ser de 10 Ω ou menor, classe 660 V: A resistência do terra deve ser de 5 Ω ou menor). Caso contrário, pode causar choque elétrico ou incêndio.
- Conecte os terminais de entrada (R,S,T) e os terminais de saída (U,V, W) corretamente.
- Caso contrário causará danos nas peças internas do inversor.
- Não lique ou opere o inversor com as mãos molhadas.
- Caso contrário, o usuário estará exposto ao risco sofrer choque elétrico.

CUIDADO

- Certifique-se que a tensão de alimentação AC satisfaz a tensão especificada do inversor.
- Danos ou incêndios podem ocorrer se a tensão não for correta.
- Conecte os cabos de alimentação e os cabos do motor devidamente apertados.

4.1 Conexão de dispositivos periféricos.

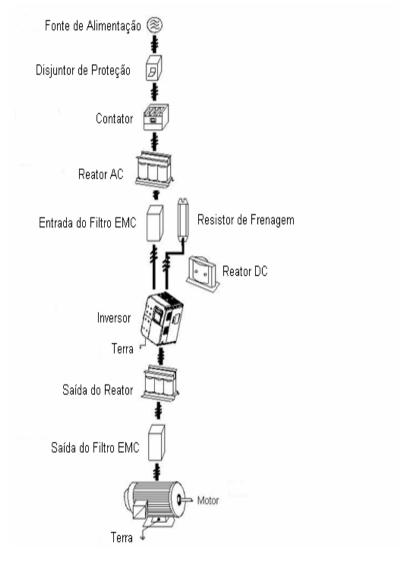


Figura 4.1 Conexão de dispositivos periféricos.

17
DAKOL INSTRUMENTOS E SISTEMAS LTDA.
www.dakol.com.br info@dakol.com.br Tel: (11) 3231-4544

Seção 1.02 4.2 Configuração dos terminais.

4.2.1 Terminais do circuito principal

Figura 4.2 Terminais do circuito principal (0.4~0.75kW 1AC 220V).

Figura 4.3 Terminais do circuito principal (1.5~2.2kW).

/ ±\	DR	(-)	R	S	Т	U	٧	W	\oplus
(,)	РБ	(-)	POWER		MOTOR				

Figura 4.4 Terminais do circuito principal (4.0~5.5kW).

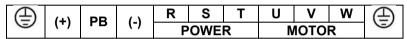


Figura 4.5 Terminais do circuito principal (7.5~15kW).

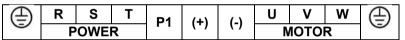


Figura 4.6 Terminais do circuito principal (18.5~110kW).

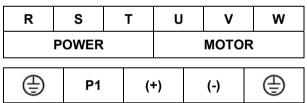


Figura 4.7 Terminais do circuito principal (132~315kW).

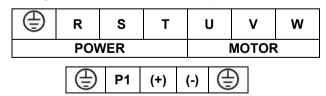


Figura 4.8 Terminais do circuito principal (350~630kW).

Funções dos terminais do circuito principal estão resumidos de acordo com os símbolos dos terminais na tabela seguinte: Ligue os terminais corretamente para o propósito desejado.

Símbolo do Terminal	Descrição da Função
R□S□T	Terminais de entrada trifásico AC
(+)□(-)	Terminais da unidade de frenagem externa
(+)□PB	Terminais do resistor de frenagem externa
P1□(+)	Terminais do reator DC externo
(-)	Terminal negativo do barramento DC
UUVUW	Terminais de saída trifásica
(b)	Terminal terra

(a) 4.2.2 Terminais do circuito de controle.

485+ 485- S1 S2 S3 S4 COM AI2 AO	Y +24V	ROA	ROB	ROC
	.			

Figura 4.9 Terminais do circuito de controle (0.4~0.75kW 1AC 220V).

485+	485-	+10V	AO	COM	Υ	+24V	ROA	ROB	ROC
Al1	GND	Al2	S1	S2	S3	S4			

Figura 4.10 Terminal do circuito de controle (1.5~2.2kW).

														_				
485+	485-	AO	Al1	GND	Al2	+ 10 V	S1	S2	S3	S4	сом	Υ	24V		ROA	ROB	ROC	

Figura 4.11 Terminais de controle (4.0kW e acima).

Unidade Externa de Frenagem Resistor de Frenagem P1 PB (+ (-) U (R 3 Fases 380V M 0 5 ±15% 50/60Hz Série CHE W Т Inversores S1 S2 Entrada Digital S3 Multifuncional S4 Interface para IHM Externa J14 COM 485+ ÷ @ 485-+24V +10V Ajuste de Frequência Frequência Ajuste AI1 Saída Analógica A01 AI2 J15 0 0 0 0-10V 0-10/0-20mA IV 0/4-20mAEntrada GND GND select Lor_V___ PE Υ Saida Multifuncional de Coletor Aberto ROA ROB ROC

4.3 Diagrama de instalação

Figura 4.12 Diagrama de instalação .

i. OBSERVAÇÃO

Relé de Saida

- Inversores entre 18.5kW e 90kW são construídos com reator DC para reduzir o fator de potência. Para os inversores acima de 110 KW, é recomendado instalar reator DC entre P1 e (+).
- Inversores abaixo 15KW são construídos com unidades de freio. Se necessário freio, somente se necessário instalar resistor de frenagem entre PB e (+).
- 3. Para inversores acima de 18.5KW, se necessário freio, deve-se instalar unidade de freio externo entre (+) e(-).

4.4 Especificação da proteção, cabo, contator e reator.

4.4.1 Especificações do disjuntor, cabo e contator.

Modelo No.	Disjuntor de Proteção (A)	Entrada/Saída Cabo (mm²)	Contator AC (A)	
1AC 220V -15%~15%				
CHE100-0R4G-S2	16	2.5	10	
CHE100-0R7G-S2	16	2.5	10	
CHE100-1R5G-S2	20	4	16	
CHE100-2R2G-S2	32	6	20	
3AC 220V -15%~15%				
CHE100-0R4G-2	16	2.5	10	
CHE100-0R7G-2	16	2.5	10	
CHE100-1R5G-2	20	4	16	
CHE100-2R2G-2	32	6	20	
CHE100-004G-2	40	6	25	
CHE100-5R5G-2	63	6	32	
CHE100-7R5G-2	100	10	63	
CHE100-011G-2	125	25	95	
CHE100-015G-2	160	25	120	
CHE100-018G-2	160	25	120	
CHE100-022G-2	200	35	170	
CHE100-030G-2	200	35	170	
CHE100-037G-2	200	35	170	
CHE100-045G-2	250	70	230	

3AC 380V -15%~15%						
CHE100-0R7G-4	10	2.5	10			
CHE100-1R5G-4	16	2.5	10			
CHE100-2R2G-4	16	2.5	10			
CHE100-004G/5R5P-4	25	4	16			
CHE100-5R5G/7R5P-4	25	4	16			
CHE100-7R5G/011P-4	40	6	25			
CHE100-011G/015P-4	63	6	32			
CHE100-015G/018P-4	63	6	50			
CHE100-018G/022P-4	100	10	63			
CHE100-022G/030P-4	100	16	80			
CHE100-030G/037P-4	125	25	95			
CHE100-037G/045P-4	160	25	120			
CHE100-045G/055P-4	200	35	135			
CHE100-055G/075P-4	200	35	170			
CHE100-075G/090P-4	250	70	230			
CHE100-090G/110P-4	315	70	280			
CHE100-110G/132P-4	400	95	315			
CHE100-132G/160P-4	400	150	380			
CHE100-160G/185P-4	630	185	450			
CHE100-185G/200P-4	630	185	500			
CHE100-220G/250P-4	800	150x2	630			
CHE100-250G/280P-4	800	150x2	700			
CHE100-280G/315P-4	1000	185x2	780			
CHE100-315G/350P-4	1200	240x2	900			

4.4.2 Especificações do reator de entrada AC, reator de saída AC e reator DC.

		le entrada			tor de sa		Reator DC.		
Modelo No.	Corrente	Indutá		Corrente	Indutância □mH□		Corrente	Indutância □mH□	
3AC 380\	3AC 380V -15%~15%								
CHE100-0R7G-4			2	7	2	2			
CH	IE100-1R5G	-4	5	3.8	5	1.5			
CH	IE100-2R2G	-4	7	2.5	7	1			
CHE1	00-004G/5R	5P-4	10	1.5	10	0.6			
CHE1	00-5R5G/7R	85P-4	15	1.4	15	0.25			
CHE1	00-7R5G/01	1P-4	20	1	20	0.13	23	3.5	
CHE1	00-011G/01	5P-4	30	0.6	30	0.087	33	2.4	
CHE100-015G/018P-4			40	0.6	40	0.066	33	1.8	
CHE100-018G/022P-4			50	0.35	50	0.052	80	0.4	
CHE100-022G/030P-4			60	0.28	60	0.045	80	0.4	
CHE100-030G/037P-4			80	0.19	80	0.032	80	0.4	
CHE100-037G/045P-4			90	0.19	90	0.03	110	0.25	
CHE100-045G/055P-4			120	0.13	120	0.023	110	0.25	
CHE100-055G/075P-4			150	0.11	150	0.019	110	0.25	
CHE1	00-075G/09	0P-4	200	0.08	200	0.014	180	0.18	
CHE1	00-090G/11	0P-4	200	0.08	200	0.014	180	0.18	
CHE1	00-110G/13	2P-4	250	0.065	250	0.011	250	0.2	
CHE1	00-132G/16	0P-4	290	0.065	290	0.011	326	0.215	
CHE100-160G/185P-4			330	0.05	330	0.01	494	0.142	
CHE100-185G/200P-4			400	0.044	400	0.008	494	0.142	
CHE100-200G/220P-4			400	0.044	400	0.008	494	0.142	
CHE100-220G/250P-4			490	0.035	490	0.005	494	0.126	
CHE100-250G/280P-4			530	0.04	530	0.005	700	0.1	
CHE1	00-280G/31	5P-4	600	0.04	600	0.005	700	0.1	
CHE1	00-315G/35	0P-4	660	0.025	660	0.004	800	0.08	

4.4.3 Especificações do resistor de frenagem

Modelo No.	Unidade d	e Frenagem	Resistor de Frenagem (100% Torque de Frenagem)					
	Ordem No. Quantidade Especificaç		Especificação	Quantidade				
3AC 220V -15%~15%								
CHE100-0R4G-2			275Ω/75W	1				
CHE100-0R7G-2			275Ω/75W	1				
CHE100-1R5G-2			138Ω/150W	1				
CHE100-2R2G-2	Embutido	1	91Ω/220W	1				
CHE100-004G-2			52Ω/400W	1				
CHE100-5R5G-2			37.5Ω/550W	1				
CHE100-7R5G-2			27.5Ω/750W	1				
CHE100-011G-2		1	19Ω/1100W	1				
CHE100-015G-2		1	13.6Ω/1500W	1				
CHE100-018G-2	DBU-055-2	1	12Ω/1800W	1				
CHE100-022G-2		1	9Ω/2200W	1				
CHE100-030G-2		1	6.8Ω/3000W	1				
CHE100-037G-2	DBU-055-2	2	11Ω/2000W	2				
CHE100-045G-2	DB0-033-2	2	9Ω/2400W	2				
3AC 380V -15%~15%	3AC 380V -15%~15%							
CHE100-0R7G-4			900Ω/75W	1				
CHE100-1R5G-4			460Ω/150W	1				
CHE100-2R2G-4			315Ω/220W	1				
CHE100-004G/5R5P-4	Embutido	1	175Ω/400W	1				
CHE100-5R5G/7R5P-4	Linbatiao		120Ω/550W	1				
CHE100-7R5G/011P-4			100Ω/750W	1				
CHE100-011G/015P-4			70Ω/1100W	1				
CHE100-015G/018P-4			47Ω/1500W	1				
CHE100-018G/022P-4	DBU-055-4	1	38Ω/2000W	1				
CHE100-022G/030P-4			32Ω/2200W	1				
CHE100-030G/037P-4			23Ω/3000W	1				
CHE100-037G/045P-4			19Ω/3700W	1				
CHE100-045G/055P-4			16Ω/4500W	1				

CHE100-055G/075P-4			13Ω/5500W	1
CHE100-075G/090P-4			19Ω/3700W	2
CHE100-090G/110P-4	DBU-055-4	2	16Ω/4500W	2
CHE100-110G/132P-4			13Ω/5500W	2
CHE100-132G/160P-4	DBU-160-4	1	5Ω/15000W	1
CHE100-160G/185P-4	DBU-100-4	1	3.5Ω/20000W	1
CHE100-185G/200P-4		1	3.5Ω/20000W	1
CHE100-200G/220P-4	DBU-220-4	1	3Ω/25000W	1
CHE100-220G/250P-4		1	3Ω/25000W	1
CHE100-250G/280P-4		1	2.5Ω/30000W	1
CHE100-280G/315P-4	DBU-315-4	1	2.5Ω/30000W	1
CHE100-315G/350P-4		1	2Ω/35000W	1

Observação:

- A seleção acima está baseada na seguinte condição: tensão do barramento DC 700V, 100% de torque de frenagem e 10% de tempo de uso.
- Conexão paralela da unidade de frenagem é útil para otimizar a capacidade de frenagem.
- 3. O fio entre o inversor e a unidade de frenagem deve ser menor do que 5m.
- O fio entre a unidade de frenagem e o resistor de frenagem deve ser menor do que 10m.
- 5. A unidade de frenagem pode ser usada continuamente por 5 minutos. Quando a unidade de frenagem estiver sendo usada, a temperatura do aparelho ficará bem alta, e o usuário não deve tocá-lo para não causar ferimentos.

4.5 Ligação do circuito principal

4.5.1 Ligação dos dispositivos na entrada do circuito principal

4.5.1.1 Circuito de proteção

É necessário conectar o disjuntor que seja compatível com a capacidade do inversor entre a alimentação trifásica e terminais de entrada (R,S,T). A capacidade do freio

1,5~2 vezes a corrente do inversor. Para maiores detalhes, veja <especificações do inversor, cabo e contator>.

4.5.1.2 Contator

Para desenergizar a alimentação quando alguma coisa no sistema está errada, é necessário instalar um contator antes da entrada, para chaveamento da alimentação do circuito principal.

4.5.1.3. Reator AC

Para prevenir um dano causado por uma alta corrente, deve-se instalar um reator AC antes da entrada do inversor. O reator AC protege o inversor contra danos causadas por variações da tensão de entrada ou harmônicas geradas pela fase de controle.

4.5.1.4. Filtro EMC de entrada

Os dispositivos ao redor do inversor podem sofrer distúrbios causados pelos cabos quando o inversor está em funcionamento. O filtro EMC pode diminuir a interferência. Exatamente como na figura a seguir.

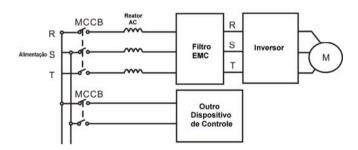


Figura 4.13 Ligação no circuito principal do inversor

(b) 4.5.2 Ligação no circuito principal do inversor

4.5.2.1 Reator DC

Inversores de 18,5kW até 90kW são construídos com reator DC no qual pode diminuir o fator de potência.

4.5.2.2 Unidade de frenagem e resistor de frenagem

 Inversores de 15KW e abaixo são construído com unidade de frenagem.Para dissipar a potência regenerativa gerada pela dinâmica de frenagem, o resistor de frenagem deve ser instalado nos terminais (+) e PB. O cabo do resistor de frenagem deve ser menor que 5m.

- Inversores de 18.5kW e acima necessitam conectar unidade de freio externo no qual deve-se instalar nos terminais (+) e (-). O cabo entre o inversor e a unidade de freio deve ser menor que 5m. O cabo entre a unidade de freio e o resistor de frenagem deve ser menor que 10m.
- A temperatura do resistor de frenagem alimentará por que a energia regenerativa será transformada em calor. Proteção de segurança e uma ventilação adequada são recomendadas.

OBSERVAÇÃO

Certifique-se que as polaridades dos terminais estão corretas Não é permitido fazer um jumper entre os terminais (+) e (-), caso contrário o inversor pode danificar ou ocorrer incêndio.

(c) 4.5.3 Ligação do motor no circuito principal

4.5.3.1 Reator de saída

Quando à distância entre o inversor e o motor é maior que 50m, o inversor pode detectar uma falha de sobre corrente inexistente causado por uma grande fuga de corrente resultado por uma capacitância parasítica em relação ao terra. Ao mesmo tempo pode impedir que a isolação do motor seja danificada, neste caso o reator de saída deve ser instalado.

4.5.3.2 Filtro EMC de saída

O filtro EMC deve ser instalado para minimizar a fuga de corrente causado pelos cabos e minimiza o ruído causado pelo cabo, entre o inversor e o cabo. Observe na figura a seguir:

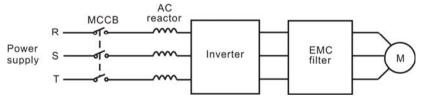


Figura 4.14 Ligação do motor no circuito principal

4.5.4 Ligação da unidade regenerativa

Unidade regenerativa é usada para transferir a energia gerada pelo freio do motor para a rede. Comparado com a tradicional ponte inversa paralela trifásica tipo unidade retificadora, unidade regenerativa usa IGBT com a finalidade de reduzir a distorção harmônica total (THD) abaixo 4%.

Unidade regenerativa é utilizada em larga escala em equipamentos centrífugos e de içamento.

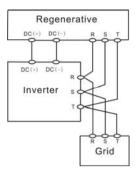


Figura 4.15 Ligação da unidade regenerativa

4.5.5 Ligação comum do barramento DC

O método do barramento DC comum é amplamente utilizado nas indústrias de papel e fibras químicas, as quais precisam de vários motores para coordenar. Nestas aplicações, alguns motores se encontram em estado de funcionamento, ao passo que outros se encontram em estado de frenagem (gerando eletricidade). regenerativa Α energia regenerada automaticamente balanceada através do barramento DC comum. significando que ela pode alimentar os motores em estado de funcionamento. Portanto o consumo de potência de todo sistema será menor do que se comparado com o método tradicional (um inversor controla um motor).

Quando dois motores estão funcionando ao mesmo tempo (ex: sistemas de ventilação) um está em funcionamento enquanto o outro está em estado regenerativo. Neste caso os barramentos DC destes dois inversores podem estar em paralelo assim a energia regenerada pode alimentar os motores em funcionamento quando necessário. A instalação detalhada é mostrada na figura abaixo:

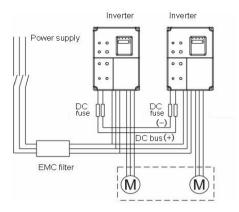


Figura 4.16 Ligação comum do barramento DC

OBSERVAÇÃO:

Dois inversores devem ser do mesmo modelo quando conectados com o método de barramento DC comum. Certifique-se de que eles são ligados ao mesmo tempo.

4.5.6 Ligação do Terra (PE)

Para garantir segurança e evitar choque elétrico ou incêndio, PE deve ser aterrado com resistência terra. O fio terra deverá ter uma bitola adequada e não deve ser muito extenso, é melhor utilizar fio de cobre (> 3,5mm ao quadrado). Quando múltiplos inversores precisarem ser aterrados, não poderão ser aterrado em uma mesma malha de aterramento.

4.6 Ligação do circuito de Controle

4.6.1 Precauções

- Para conectar os terminais de controle Utilize cabo blindado ou par-trançado.
- Conecte o terminal terra (PE) com cabo blindado
- O cabo conectado ao terminal de controle não deve estar próximo do circuito principal e circuitos de altas correntes (incluindo cabo de alimentação, cabo do motor, relé e cabo de conexão de contatores). Ele deve estar distante no mínimo 20cm e deve ser evitada ligação paralela.

Sugerimos que seja feita uma ligação perpendicular para prevenir o mau funcionamento do inversor causado por interferências externas.

4.6.2 Terminais do circuito de controle.

Nº do Terminal	Função						
S1~S4	ON-OFF sinal de entrada, óptico acoplador com PW e COM. Range de tensão de entrada: 9 ~ 30 V Impedância de entrada: 3,3 kΩ						
+24V	Permite saída de alimentação de + 24V Corrente máxima de saída: 150mA						
Al1	Entrada analógica: 0 ~ 10V Impedância de entrada: 10 kΩ						
Al2	Entrada analógica: $0 \sim 10V/0 \sim 20$ mA, configurado pelo J16 Impedância de entrada: 10 k Ω (tensão de entrada) / 250ohms (corrente de entrada)						
GND	Terminal de aterramento comum do sinal analógico e +10V. GND deve ser isolado do COM.						
+10V	Fornece +10V para inversor						
СОМ	Terminal terra comum para sinal digital e +24V (ou fonte de alimentação externa)						
AO	Fornece tensão ou corrente de saída que pode ser configurado pelo J15 Range de Saída: 0 ~ 10V/ 0 ~ 20mA						
Y	O terminal comum de aterramento da saída do coletor aberto é o terminal COM						
ROADROBDROC	Relê de saída: ROA comum; ROB NC; ROC - NO. Capacidade de contato: AC 250V/3 A, DC 30V / 1 A.						

4.6.3 Jumpers do circuito de controle

Jumper	Function
J2, J4	Configuração Padrão: J2 e J4 são desconectados. Ë proibido estar conectados juntos, caso contrário causará um mau funcionamento do inversor.
J7	Configuração Padrão: 2 e 3 conectados. Não mude a configuração padrão, caso contrario causará um mau funcionamento de comunicação.
J16	Seleção entre (0 ~ 10 V) tensão de entrada e (0 ~ 20 mA) corrente de entrada. V conecta ao GND (pino central do J16) I conecta ao GND (pino central do J16)
J15	Seleção entre (0 ~ 10V) tensão de saída e (0 ~ 20 mA) corrente de saída. V conecta ao OUT (pino central do J15) I conecta ao OUT (pino central do J15)

4.6.4 Configuração da entrada analógica Al2 (1AC 0.4~0.75kW)

Al 2 Pode de ser configurado em 3 modos (0 \sim 24V/ 0 \sim 10V/ 0 \sim 20mA). De acordo com a configuração do J16.

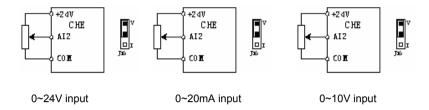


Figura 4.17 Configuração da entrada analógica AI2 (0.4~0.75kW 1AC)

Para o potenciômetro externo, a resistência deve ser maior que 3 k Ω e a potência deve ser maior que 1/4W. É recomendado que o potenciômetro seja de 5 ~ 10 k Ω .

OBSERVAÇÃO:

O terminal usará o circuito interno para ajustar o sinal de entrada. As duas primeiras configurações possuem variação de tensão interna relativa de 0 ~ 10V. A terceira configuração possui range de tensão interna relativa de 0 ~ 5V.

4.7 Guia de instalação do filtro EMC

4.7.1 Descrição geral do EMC

EMC é a abreviação de "Elctromagnetic compatibility", o que significa que os dispositivos ou sistemas podem funcionar normalmente em ambiente eletromagnético e não irá gerar qualquer interferência eletromagnética a outros equipamentos.

Existem dois tipos de EMC: interferência eletromagnética e anti-jamming eletromagnético.

De acordo com o modo de transmissão, a interferência eletromagnética pode ser dividida em 2 categorias: interferência conduzida e interferência radiada.

A interferência conduzida é a interferência transmitida pelo condutor. Sendo assim, quaisquer condutores (tais como fiação, linha de transmissão, indutor, condutor, etc.) são os canais de transmissão de interferência.

Interferência radiada é a interferência transmitida em onda eletromagnética, e a energia é inversamente proporcional ao quadrado da distância.

Três condições necessárias ou essenciais para interferência eletromagnética são: fonte de interferência, canal de transmissão e receptor sensível. Para usuários, a solução do problema EMC é principalmente o canal de transmissão.

4.7.2 Especificações do filtro EMC do inversor

Como qualquer outro dispositivo eletrônico ou elétrico o inversor não é apenas uma fonte geradora de interferência eletromagnética, mas é também um receptor eletromagnético. A principal operação do inversor determina que ele pode produzir certos ruídos ou interferências eletromagnéticas. E ao mesmo tempo o inversor deve ser desenvolvido com habilidade anti-atolamento(antijamming) para garantir seu funcionamento perfeito em ambientes eletromagnéticos. Segue abaixo as características do EMC:

- 4.7.2.1 Corrente de entrada sem sinal de onda. A entrada de corrente possui uma grande quantidade de ondas com alta amplitude que podem causar interferência eletromagnética, diminuir o fator de potência e aumentar as perdas na linha de trabalho.
- 4.7.2.2 Tensão de saída de alta freqüência em ondas (PWM), o que pode aumentar a temperatura e diminuir a vida útil do motor. E a fuga de corrente também será aumentada, o que pode encadear o mau funcionamento do dispositivo de proteção de vazão e gerar uma forte interferência eletromagnética que influenciará na confiabilidade de outros dispositivos elétricos.
- 4.7.2.3 Sendo ele um receptor eletromagnético, uma forte interferência danificará o inversor e irá interferir no uso normal dos usuários.
- 4.7.2.4 No sistema, EMS e EMI o inversor coexiste. A diminuição do EMI do inversor pode aumentar a funcionabilidade do EMS.

4.7.3 Instalação do EMC

Para certificar-se que todos os dispositivos do mesmo sistema estão funcionando corretamente, esta sessão, baseada nas características do EMC do inversor, apresenta o processo de instalação em diversos aspectos de aplicação (controle de ruídos, fiação local, aterramento,fuga de corrente, filtro de alimentação). A eficiência do EMC vai depender dos cinco aspectos.

4.7.3.1 Controle de Ruído

Todas as conexões nos terminais de controle devem ser feitas com cabo blindado. A malha de aterramento do cabo deve estar próxima a fiação de entrada do inversor. O modo de conexão do aterramento é de 360 graus angular a conexão formada pelo chicote de cabos.

É estritamente proibido conectar cabo de par trançado junto à camada do terra do inversor , o que diminui drasticamente ou perde o efeito da blindagem.

Conecte o inversor e motor ao cabo blindado ou em bandejas separadas. Um lado da camada blindado do cabo blindado ou a tampa de metal do

bandejamento deve ser conectado ao terra , e o outro lado deve ser conectado a tampa do motor. A instalação do filtro EMC pode reduzir consideravelmente o ruído eletromagnético.

4.7.3.2 Fiação local

Fiação da alimentação: a potência deve ser fornecida isolada do transformador elétrico. Normalmente são de 5 vias , as quais três vias são fases (R,S,T) , uma via é o neutro , e a outra é o fio terra. É estritamente proibido usar a mesma linha para ser ambos fio neutro e fio terra.

Classificando dispositivo: Existem dispositivos elétricos diferentes, contidos em único painel de controle, tais como o inversor, filtro, CLP e instrumentos etc, os quais tem diferentes capacidades de emitir e reter ruídos eletromagnéticos.

Portanto é necessário classificar estes dispositivos em dispositivo que gera um ruído muito forte e dispositivo sensíveis a ruído. Os mesmos tipos de dispositivos devem estar localizados na mesma área, e a distância entre dispositivos de categorias diferentes deve ser maior do que 20cm.

Arranjo interno da fiação no interior do painel de controle: há cabo de sinal (baixa corrente) e cabo de potência (alta corrente) em um mesmo painel. Para o inversor, os cabos de potência são classificados em cabo de entrada e cabo de saída. Os cabos de sinal podem facilmente sofrer interferência do cabo de potencia ocasionando mau funcionamento do equipamento. Portanto quando instalados, os cabos de sinal e os cabos de potência eles devem ser acomodados em áreas distintas. É estritamente proibido arranjá-los em paralelo ou entrelaça-los (distancia mínima 20cm) ou fixa-los juntos. Se os cabos de sinal tiverem que cruzar os cabos de potência devem ser posicionados em ângulos de 90graus. Tanto potência de entrada e cabo de saída não devem ser entrelaçados ou fixados juntos, especialmente quando o filtro EMC for instalado. Caso contrário a capacitância distribuída dos cabos de potência de entrada e saída podem misturar-se um ao outro impedindo o funcionamento do filtro EMC.

4.7.3.3 Aterramento:

O inversor deve estar aterrado com segurança quando estiver em funcionamento. Aterramento é uma das prioridades dentre todos os métodos EMC (electricmagnetic compatibility) por que não somente garante a segurança do equipamento e das pessoas como também é a solução mais simples, eficiente e de baixo custo para problemas com o EMC.

Existem três categorias de aterramento: aterramento de pólo especial, aterramento de pólo comum, aterramento series-wound. Diferentes sistemas de controle devem usar aterramento de pólo especial, dispositivos diferentes no mesmo sistema de controle deve usar aterramento de pólo comum, e dispositivos conectados pelo mesmo cabo de potência deve usar aterramento series wound.

4.7.3.4 Vazão de corrente

A vazão de corrente pode ser vazão line-to-line e vazão de corrente over-ground. Seu valor depende na capacitância distribuída e a freqüência portadora do inversor. A vazão de corrente over-ground, que é a corrente que passa pelo cabo de aterramento comum, pode não somente vazar pelo sistema do inversor como também para os dispositivos. Também pode causar vazão na corrente do circuito de frenagem, mau funcionamento do relé e outros dispositivos. O valor de vazão da corrente line-to-line, que é a corrente de vazão que passa pelos capacitores na fiação de entrada e saída, depende da freqüência portadora do inversor, da largura e área da bitola dos cabos do motor. Quanto maior a freqüência portadora do inversor, maior o cabo do motor e/ou maior a área da bitola dos cabos, maior será a vazão de corrente.

Contagem de medida (countermeasure):

Diminuindo a freqüência portadora pode diminuir a vazão da corrente consideravelmente. No caso do cabo do motor ser relativamente longo (maior que 50m), é necessário instalar reator AC ou filtro de onda senoidal na saída, e quando for ainda maior, é necessário instalar um reator a cada distância específica.

4.7.3.5 Filtro EMC

O filtro EMC tem grande efeito de desacoplamento eletromagnético, então é preferível que o usuário instale.

Para inversor, o filtro de ruído tem as seguintes características:

- Filtro de ruído instalado na entrada do inversor.
- Instalar isolação de ruído para outros equipamentos através do transformador de isolamento ou filtro de potência.

5. OPERAÇÃO

5.1 Descrição da IHM

5.1.1 Diagrama esquemático da IHM

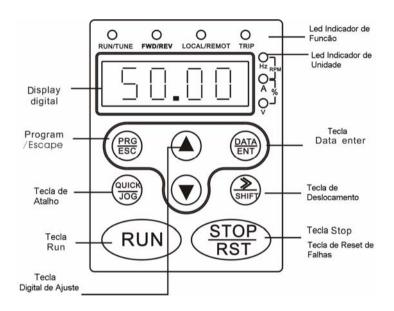


Figura 5.1 Diagrama esquemático da IHM.

5.1.2 Descrição de funções das teclas

Símbolo Tecla	Nome	Descrição da Função
	Tecla de programação	Entrada ou saída do 1º nível do menu
	Tecla Enter	Entrada progressiva do menu e confirmação de parâmetros
	Tecla de incremento	Aumenta a informação ou códigos de função
V	Tecla de decre atr G	Diminui a informação ou códigos de função
	Tecla de combinação.	Exposições cíclicas dos parâmetros pela tecla leftshift. Em estado de funcionamento ou parado. Observe que quando em operação, deve-se primeiramente pressionar e segurar a tecla DATA/ENT e então pressione a tecla QUICK/JOG.
	Tecla Shift	No parâmetro de modo de configuração, pressione esta tecla para selecionar o bit a ser modificado. Em outros modos, o display exibe ciclicamente os parâmetros de deslocamento direito.
	Tecla Run	Partida do inversor em modo de controle pela IHM
	Tecla STOP/RESET	Em funcionamento, restringido por P7. 04, podendo ser usado com inversor em Stop. Quando houver alarme de falha, o inversor pode ser resetado sem qualquer restrição.
	Tecla de Atalho Multifu ntal	Código da função determinada pelo P7.03: 0: Operação Jog 1: Chaveamento entre sentido horário e anti-horário 2: Zera configurações de UP/DOWN 3: Modo 1 de debugging rápido (pelo menu) 4: Modo 2 de debugging rápido (pelo último comando) 5: Modo 3 de debugging (pelos parâmetros de configuração de fábrica)
	Combile	Pressionando RUN e STOP/REST ao mesmo tempo para parada instantânea.(coast to stop)

5.1.3 Descrição de Leds indicadores

5.1.3.1 Descrição de funções dos leds indicadores

Nome do Led indicador	Descrição de Leds indicadores		
RUN/TUNE	Apagado: Parado (Stop status) Piscando: estado de auto-ajuste de parâmetros		
	Aceso: estado de operação		
באים/חבע	Artigo II. Apagado: Sentido horário de operação		
FWD/REV	Aceso: Sentido anti-horário de operação		
LOCAL/REMOT	Apagado: controle pela IHM Piscando: Terminal de controle		
	Aceso: controle de comunicação		
TDID	Apagado: estado normal de operação		
IKIP	Piscando: sobrecarregado (estado de atenção)		

5.1.3.2 Descrição do led indicador de unidade

Símbolo	Descrição	
Hz	Unidade de Freqüência	
Α	Unidade de Corrente	
V	Unidade de Tensão	
RPM	Unidade de Rotação (Velocidade)	
%	Porcentagem	

5.1.3.3 IHM Digital

Há 5 combinações nos leds indicadores de unidade, os quais contem todos os tipos de informações que podem ser monitoradas e códigos de alarme tais como referencia de freqüência e freqüência de saída, etc.

Artigo III. 5.2 - Processo de Operação

5.2.1 -Parâmetros de configuração

Os três níveis do menu são:

- Grupo de código de função (primeiro nível)
- Código de função (segundo nível)
- Valor do código de função (terceiro nível)

COMENTÁRIO:

Pressionando ambos PRG/ESC e o DATA/ENT o usuário pode retornar para segundo nível do menu e terceiro nível do menu. A diferença é: pressionando PRG/ESC você salva os parâmetros programados no painel de controle, e então retorna para o segundo nível do menu mudando para o próximo código de função automaticamente; enquanto se o usuário pressionar direto DATA/ENT retornará

diretamente para o menu sem salvar os parâmetros, e ainda permanece no mesmo código de função.

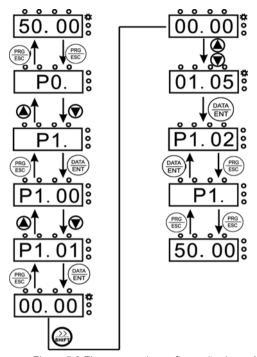


Figura 5.2 Fluxograma de configuração de parâmetros

Abaixo do terceiro nível se o parâmetro não tem bit piscando, isso quer dizer que o código de função não pode ser modificado. As razões possíveis podem ser:

- Esse código de função não pode ser modificado enquanto o aparelho estiver ligado.
- Esse código de função não pode ser modificado em estado de funcionamento, mas modificado em estado de parada.

5.2.2 Reset de falhas:

Se o inversor falhar, ele irá instantaneamente enviar informação de falha. O usuário pode usar a tecla STOP/RST ou os terminais que são determinados pelo grupo P5 para cancelar a falha. Depois de cancelada, o inversor se encontrará em estado de stand-by. Se o usuário não cancelar a falha do inversor quando ele

estiver em estado de falha, ele se encontrará em estado de proteção de operação, e não funcionará.

5.2.3 Parâmetros de auto-ajuste do motor:

Se o modo de "controle vetorial sensorless (SVC)" for escolhido, a descrição do motor e suas características devem ser introduzidas corretamente, pois o auto ajuste é baseado em tais informações. A performance do sistema de controle vetorial depende fortemente das características do motor, então para obter uma excelente performance, primeiramente devemos obter todas as características e informações do motor com exatidão.

O procedimento de parametrização do auto ajuste do motor (autotuning) é conforme descrito abaixo:

Primeiramente, escolher o canal de comando da IHM como o canal de operação; (P0. 01).

Então, deve-se parametrizar os seguintes parâmetros de acordo com as características do motor utilizado:

P2.00: potência do motor

P2.01: freqüência do motor

P2.02: velocidade do motor

P2.03: tensão do motor

P2.04: corrente do motor

Nota: O motor deve estar desacoplado de sua carga; caso contrário, os parâmetros do motor obtidos pelo auto ajuste (autotuning) podem não estar corretos.

Ajuste P0. 12 para 1, e para detalhar o processo de parametrização do auto ajuste do motor (autotuning), por favor, consulte a descrição do código de função P0. 12. Em seguida pressione RUN na IHM, e o inversor calculará automaticamente os seguintes parâmetros do motor:

P2.05: resistência do estator do motor

P2.06: resistência do rotor do motor

P2.07: indutância do estator e rotor do motor

P2.08: indutância mútua do estator e rotor do motor

P2.09: corrente do motor sem carga;

Assim, o auto ajuste do motor estará finalizado.

5.2.4 Configuração de password (Senha)

A série de inversor CHE oferece aos seus usuários uma função de senha de proteção. Quando P7.00 é ajustado diferentemente de zero, este será o password (senha) do usuário, e após sair do modo de edição do código de função, ele entrará em vigor em 1 minuto. Se pressionar PRG/ESC novamente para tentar acessar o

modo de edição do código de função, aparecerá na IHM "0.0.0.0.0", e o operador deverá entrar com a senha correta, caso contrário o acesso não será permitido.

Se necessário cancelar a função de senha de proteção, ajuste P7.00 para 0.

5.3 Estado de funcionamento

5.3.1 Energização

Primeiramente o sistema deve ser inicializado durante a energização do inversor, e o display da IHM mostrar "CHE". Depois que a inicialização estiver completa o inversor estará em estado de stand by.

5.3.2 Standby

Em estado de funcionamento ou parado, os parâmetros de multi estados aparecerão no display. Sendo ou não mostrado o parâmetro ele poderá ser escolhido através do código de função P7. 06 (seleção do display da IHM em estado de funcionamento) e P7.07 (seleção do display da IHM em estado parado /stop) de acordo com os bits. Para obter a descrição detalhada de cada bit, por favor, consulte a descrição do código de função P7. 06 e P7. 07.

Em estado parado, existem nove parâmetros que podem ser escolhidos para aparecer no display da IHM ou não. São eles: referência de freqüência, tensão do barramento DC, estado de entrada ON-OFF, estado de saída de coletor aberto, configuração PID, realimentação PID (feedback), tensão de entrada analógica AI1, tensão de entrada analógica AI2, números de estágios de função multi-speed. Sendo ou não mostrado, pode ser decidido pela configuração dos bits P7. 07 correspondentes. Pressione /SHIFT para navegar pelos parâmetros no sentido da direita. Pressione DATA/ENT + QUICK/JOG para navegar pelos parâmetros no sentido da esquerda.

5.3.3 Parâmetros de auto ajuste do motor (autotuning)

Para detalhes, por favor, consulte a descrição do P0. 12.

5.3.4 Operação

Em estado de funcionamento, existem 14 parâmetros de funcionamento:

Freqüência de saída, referencia de freqüência, tensão do barramento DC, tensão de Saída, Corrente de saída, Potência de saída, torque de Saída, configuração PID, realimentação de PID (feedback), estado on-off, estado de saída do coletor aberto, valor do comprimento, valor de contagem ,Números de passos do CLP e velocidade multi-speed,Tensão de entrada analógica A1, tensão de entrada analógica A2 e numero de estágios de velocidade multi-speed. Sendo ou não

mostrado pode ser decidido pela opção do código de função P7. 06 (convertido em sistema binário). Pressione I/SHIFT para navegar pelos parâmetros no sentido da direita. Pressione DATA/ENT + QUICK/JOG para navegar pelos parâmetros no sentido da esquerda.

Artigo IV. 5.3.5 Falha

Artigo V. A série de inversores CHE oferece uma variedade de informações de falha.

Para detalhes, veja falhas do inversor em seu guia de falhas

5.4 Teste rápido

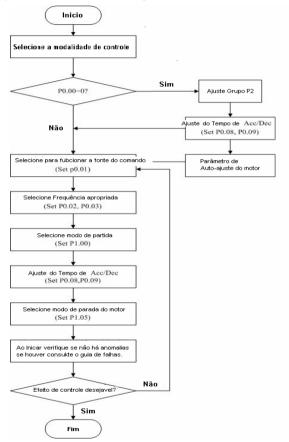


Figura 5.3 Teste rápido do diagrama

6. DESCRIÇÃO DETALHADA DAS FUNÇÕES

Seção 5.01 6.1 P0 Grupo de funções básicas

Código da função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P0.00	Seleção modo de controle	0: controle vetorial Sensorless 1: controle V/F 2: controle por torque	0~2	0

- 0: <u>Controle vetorial sensorless</u>: é amplamente usado para a aplicação que requer alto torque em baixa rotação, precisão em alta velocidade e resposta dinâmica mais rápida, tais como: máquinas de injeção de moldes, maquinas centrifugas, extrusoras etc.
- 1: <u>Controle V/F</u>: é configurável de acordo com propósito geral da aplicação tais como bombas, ventiladores etc.
- 2: <u>Controle por torque</u>: é configurável para aplicações com baixa precisão no controle de torque, tais como extrusoras. No modo de controle por torque, a velocidade do motor é determinada pela carga, a escala de aceleração e desaceleração não tem relação com o valor do parâmetro P0. 08 e P0. 09 (ou P8. 00 e P8. 01).

NOTA:

- O inversor só poderá controlar um motor quando P0. 00 estiver configurado entre 0 ou 2.Quando P0.00 é configurado 1 o inversor poderá controlar multi-motores.
- O auto ajuste dos parâmetros do motor deve ter um bom desempenho quando P0. 00 é configurado entre 0 ou 2.
- Para atingir melhores características de controle, os parâmetros reguladores de velocidade (P3. 00 até P3. 05) deverá ser ajustado de acordo com a situação atual quando P0. 00 é configurado entre 0 ou 2.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P0.01	Fonte do comando de partida	0: IHM (led apagado) 1:Terminal (led piscando) 2:Comunicação (led aceso)	0~2	0

A operação, funcionamento em sentido horário, e sentido anti-horário, jog no sentido horário e jog no sentido anti-horário, pode ser controlada pelos terminais de entrada multifuncionais.

2: Comunicação (LED aceso)

A operação do inversor pode ser controlada pelo host através de comunicação.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P0.02	UP/DOWN (Configuração)	0: Válido, salva o valor de UP/DOWN quando desligado 1: Válido, não salva o valor de UP/DOWN quando desligado 2: Inválido 3: Válido durante funcionamento, limpa quando para.	0~3	0

- 0: Usuário pode ajustar a referência de freqüência pelo UP/DOWN. O valor de UP/DOWN pode ser salvo quando o equipamento for desligado.
- 1: Usuário pode ajustar a referência de freqüência pelo UP/DOWN, mas o valor de UP/DOWN não será salvo quando o equipamento for desligado.
- 2: Usuário não pode ajustar a referência de freqüência pelo UP/DOWN. O valor de UP/DOWN será zerado se P3.05 estiver ajustado em 2.
- 3: O usuário só ajustará a referência de freqüência pelo UP/DOWN durante o funcionamento do inversor. O valor de UP/DOWN será zerado quando o inversor estiver em estado parado.

NOTA:

- A função UP/DOWN pode ser acionada pelas teclas (e) e terminais multifuncional.
- Referência de frequência pode ser ajustada pelas teclas UP/DOWN
- UP/DOWN tem prioridade máxima o que significa que está sempre ativa não importa qual comando de freqüência está sendo usada.
- Quando a configuração de fábrica is restaurada (P1. 03 está ajustado em 1), o valor de UP/DOWN será cancelado.

Código da função	Nome	Descrição	Configuração do Range	Configuração de Fabrica
P0.03	Comando da freqüência A	0: IHM 1: Al 1 2: Al 2 3: Al 1 + Al 2 4: Multi estágios de velocidade (multi-speed) 5: PID 6: Comunicação	0~6	0

0: IHM. Por favor, consulte a descrição do P3. 00

1: Al 1 (entrada analógica 1)

2: Al 2 (entrada analógica 2)

3: Al 1 + Al 2

A referência de freqüência deve ser ajustada pela entrada analógica. Os inversores da série CHE possuem 2 entradas analógicas. Al 1 é de 0 ~10 V de tensão no terminal de entrada, enquanto Al 2 é de 0 ~10 V de tensão na entrada ou 0 ~20 mA de corrente na entrada. A tensão de entrada ou a corrente de entrada de Al 2 pode ser selecionada pelo Jumper 16(J 16)

NOTA:

- Quando Al 2 é selecionado como 0 ~20 mA de corrente de entrada, o range de tensão correspondente será de 0 ~ 5 V, para detalhes sobre relação entre a tensão de entrada analógica e freqüência, por favor consulte a descrição de P0.07 ~ P5.11.
- 100% da entrada está relacionada à fregüência máxima.
- 4: Multi-speed

A referência de freqüência é determinada pelo grupo PA a seleção dos estágios é determinado pela combinação dos terminais multi-speed.

NOTA.

- O modo multi-speed terá prioridade quando estiver configurando a referência de freqüência se P0. 03 não estiver ajustado em 4. Neste caso somente os estágios de 1 ~15 estarão disponíveis.
- Se P0.03 estiver ajustado para 4, estágios de 0 ~15 estarão disponibilizados. JOG terá mais alta prioridade.

5: PID:

A referência de freqüência é o resultado de ajuste do PID. Para detalhes favor consultar a descrição do grupo P 9.

6: Comunicação

A referência de freqüência deve ser ajustada através da RS 485. Para detalhes, favor consultar a descrição do capítulo 10.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fabrica
P0.04	Freqüência Máxima	P0.05~600.00Hz	P0.05~600.00	50.00Hz

NOTA:

- A referência de freqüência não deve exceder a freqüência máxima.
- O tempo de aceleração atual e o tempo de desaceleração serão determinados pela freqüência máxima. Por favor, consulte a descrição de P0.08 e P0.09.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P0.05	Freqüência acima do limite	P0.06~ P0.04	P0.06~P0.04	50.00Hz

NOTA:

- Frequência acima do limite não deve ser maior que a frequência máxima.(P0. 04).
- Frequência de saída não deve exceder a frequência acima do limite.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P0.06	Freqüência abaixo do limite	0.00 Hz ~ P0.05	0.00~P0.05	0.00Hz

NOTA:

- Frequência abaixo do limite não deve ser maior que a frequência limite (P0.
 05).
- Se a referência de frequência é menor que P0.06, a ação do inversor é determinada pelo P1.12. Por favor, consulte a descrição de P1. 12.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P0.07	Referencia de Freqüência - IHM	0.00 Hz ~ P0.04	0.00~P0.04	50.00Hz

Quando P0. 03 estiver ajustado em 0, o parâmetro é o valor inicial de referência de freqüência do inversor.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P0.08	Tempo de Aceleração 0	0.0~3600.0s	0.0~3600.0	Depende do Modelo
P0.09	Tempo de Desaceleração 0	0.0~3600.0s	0.0~3600.0	Depende do Modelo

Tempo de aceleração é o tempo de aceleração de 0Hz até a freqüência máxima (P0. 04).

Tempo de desaceleração é o tempo de desaceleração da freqüência máxima (P0. 04) até 0 Hz.Por favor, consulte a figura a seguir:

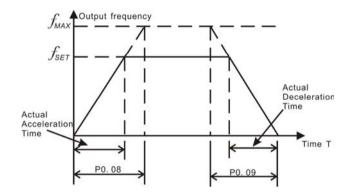


Figura 6.1 Tempo de aceleração e desaceleração.

Quando a referência de freqüência é igual à freqüência máxima, o tempo de aceleração de desaceleração atual será igual a P0. 08 e P0. 09 respectivamente Quando a referência de freqüência é menor que à freqüência máxima, o tempo de

aceleração de desaceleração atual será menor a P0. 08 e P0. 09 respectivamente.

O tempo atual de aceleração (desaceleração) = P0. 08 (P0. 09) * referência de freqüência /P0. 04.

A série CHE de inversores possui dois grupos de tempo de aceleração e desaceleração.

1° Grupo P0.07, P0.08

2º Grupo P8.00, P8.01

O tempo de aceleração e desaceleração pode ser selecionado pela combinação de terminais mult-funcionais on-off determinados pelo grupo P5. A configuração de fábrica do tempo de aceleração e desaceleração é conforme segue abaixo:

5.5 kW e abaixo: 10.0s
7.5KW até 30KW: 20.0s
37KW e acima: 40.0s

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P0.10	Seleção de direção de Funcionamento	0: sentido horário 1: sentido anti-horário 2: reversão proibida	0~2	0

Nota:

- A direção de rotação do motor é correspondente a fiação do motor
- Quando a configuração de é restaurada (P0.13 é ajustado em 1), a direção de rotação do motor pode ser mudada. Por favor, tenha cuidado ao usar. Se P0. 10 for ajustado em 2, o usuário não poderá mudar a direção de rotação do motor pelo QUICK/JOG ou via terminal.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fabrica
P0.11	Freqüência Portadora	0.5~15.0kHz	0.5~15.0	Depende do modelo

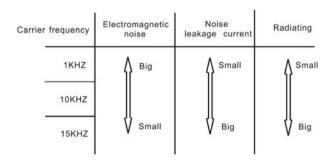


Figura 6.2 Efeito da Freqüência portadora

A tabela seguinte é a relação entre a escala de potência e freguência portadora:

Portadora f Modelo	Freqüência portadora máxima f (kHz)	Freqüência portadora mínima f (kHz)	Configuração de Fábrica (kHz)
Modelo G: 0.4 kW ~11 kW	15	1	8
Modelo P: 0.75kW ~15kW	13	-	0
Modelo G: 15kW ~55kW	•		
Modelo P: 18.5kW ~75 kW	8	1	4
Modelo G: 75 kW ~300kW	0	4	0
Modelo P: 90kW ~315kW	6	1	2

A fregüência portadora afetará o ruído do motor e o EMI do inversor.

Se a freqüência portadora for aumentada, causará uma onda de corrente melhor, uma corrente harmônica menor e ruído mais baixo do motor.

NOTA:

- A configuração de fábrica é ideal na maioria dos casos. Não é recomendada a modificação dos parâmetros
- Se a freqüência portadora exceder a configuração de fábrica, o inversor será danificado, por que quanto maior a freqüência portadora será maior a perda do chaveamento, elevação de temperatura do inversor e uma interferência magnética maior.

Se a freqüência portadora for menor que a configuração de fábrica, é possível causar menos torque de saída do motor e maior corrente harmônica.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P0.12	Parâmetro de auto ajuste do motor	0: sem ação 1: auto ajuste de rotação 2: auto ajuste de estática	0~2	0

0: Sem ação: Auto ajuste proibido

1: Auto ajuste de rotação

- Não conecte qualquer carga ao motor quando estiver fazendo o auto ajuste para certificar-se que o motor se encontra em estado de estática.
- Introduza as características técnicas do motor (P2.01 ~P2.05) corretamente antes de executar o auto ajuste. Caso contrário os parâmetros detectados pelo auto ajuste serão incorretos; e influenciará o desempenho do inversor.
- Ajuste o tempo de aceleração e de desaceleração apropriados (P0.08 e P0.09) de acordo com a inércia do motor antes de executar o auto ajuste.

Caso contrário causará uma falha de sobre corrente e uma sobre tensão durante o auto ajuste.

- O processo é conforme descrito abaixo:
- A. Ajuste P0. 12 em 1 e pressione a tecla DATA/ENT, aparecerá na IHM "-TUN-" e piscará. Enquanto "-TUN-" estiver piscando, pressione a tecla PRG/ESC para sair do auto aiuste.
- B. Pressione a tecla RUN para iniciar o auto juste. Aparecerá na IHM "-TUN-0".
- C. Depois de alguns segundos o motor começará a funcionar. Aparecerá na IHM "-TUN-1" e "RUN/TUNE" piscará.
- D. Depois de alguns minutos, aparecerá na IHM "-END-". O que significa que o auto ajuste terminou e voltou para o estado de parado.
- E. Durante o auto-ajuste, pressione a tecla STOP/RST para parar o auto-ajuste.

Nota:

Somente a IHM pode controlar o auto-ajsute. P0. 12 será restaurado em 0 automaticamente quando o auto-ajuste for finalizado ou cancelado.

2: auto-ajuste estático:

- Se for difícil desacoplar a carga, é recomendado o auto-ajuste estático.
- O procedimento de operação é o mesmo procedimento do auto ajuste de rotação. Exceto o passo C

Nota:

A indutância mútua e corrente sem carga não serão detectados pelo auto-ajuste estático, se necessário o usuário pode introduzir valores configuráveis de acordo com a experiência.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P0.13	Parâmetros de restauração	0: sem ação 1: restaura Configuração de fabrica. 2: limpa histórico de falhas	0~2	0

^{0:} sem ação

- 1: restaura todos os parâmetros configurados de fábrica exceto grupo P2
- 2: limpa histórico de falhas.
- O código de função será restaurado para 0 automaticamente quando completar a operação de função.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P0.14	Função AVR	0: desabilitado 1: sempre desabilitado 2: desabilitado durante a desaceleração	0~2	1

A Função AVR (regulador automático de tensão) garante a estabilidade da corrente de saída do inversor independente das mudanças de tensão do barramento DC. Durante a desaceleração, se a função AVR é desabilitada, o tempo de desaceleração será curto, mas a corrente será grande. Se a função AVR é habilitada o tempo todo, o tempo desaceleração será longo, mas a corrente será pequena.

6.2 Grupo P1 - Controle de partida e parada

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P1.00	Modo de Partida	0: Partida direta 1: Frenagem DC e partida	0~1	0

^{0:} Partida direta: De partida no motor com a freqüência de partida determinada pelo P1 01

1: Frenagem e partida: primeiro o inversor libera corrente DC e depois liga o motor com a freqüência de partida. Por favor, consulte a descrição do P1. 03 e P1. 04. Seu uso é indicado para motores que tenha uma carga baixa de inércia e também sentido de rotação reverso.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P1.01	Freqüência de partida	0.00~10.00Hz	0.00~10.00	1.5Hz
P1.02	Tempo de espera para freqüência de partida	0.0~50.0s	0.0~50.0	0.0s

- Ajuste a freqüência de partida apropriadamente e obtenha um aumento no torque de partida.
- Se a referência de freqüência for menor que a freqüência de partida, o inversor estará em estado de stand-by. O led indicador do RUN/TUNE está aceso, e o inversor não tem saída.
- A frequência de partida poderia ser menor que a frequência limite (P0.06)
- P1.01 e P1.02 não tem efeito durante o chaveamento FWD/VER

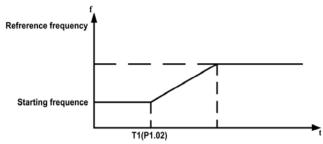


Figure 6.3 Diagrama de partida

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P1.03	Corrente de frenagem DC antes de iniciar	0.0~150.0%	0.0~150.0	0.0%
P1.04	Tempo de frenagem DC antes de iniciar	0.0~50.0s	0.0~50.0	0.0s

Quando o inversor inicia, ele opera primeiramente a frenagem DC de acordo com P1.03, e posteriormente começa a acelerar de acordo com P1.04.

NOTA:

- A frenagem DC só terá efeito somente se o P1.00 é ajustado em 1.
- A frenagem DC é inválida quando P1.04 é ajustado em 0.
- O valor de P1.03 é a porcentagem da escala de corrente do inversor.
 Quanto maior a corrente de frenagem DC, maior a frenagem de torque.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P1.05	Modo de parada	0:Desaceleração para parar 1: Parada por inércia	0~1	0

0:Desaceleração para parar

Quando comando para parar é usado, o inversor minimiza a saída de freqüência de acordo com o tempo de aceleração/desaceleração selecionado até parar.

1: Parada por Inércia

Quando o comando para parar é usado, o inversor bloqueia a saída imediatamente. A parada do motor é pela inércia mecânica.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P1.06	Freqüência de partida da frenagem DC	0.00~P0.04	0.00~50.00	0.00Hz
P1.07	Tempo de espera antes da Frenagem DC	0.0~50.0s	0.0~50.0	0.0s
P1.08	Corrente de Frenagem DC	0.0~150.0%	0.0~150.0	0.0%
P1.09	Tempo de Frenagem DC	0.0~50.0s	0.0~50.0	0.0s

<u>Freqüência de partida da frenagem DC:</u> A frenagem DC inicia quando a freqüência de saída atinge a freqüência de partida determinada pelo P1. 06.

<u>Tempo de espera antes da Frenagem DC:</u> O inversor bloqueia a saída antes de iniciar a frenagem DC. Depois deste momento, inicia-se a frenagem DC. É comum prevenir falha de sobre corrente causada pela frenagem DC de alta velocidade.

<u>Corrente de Frenagem DC:</u> O valor do P1.08 é a porcentagem da escala da corrente do inversor. Quanto maior a corrente de frenagem DC, maior a frenagem de torque.

<u>Tempo de Frenagem DC:</u> É tempo usado para realizar a frenagem DC. Se o tempo for 0 , a frenagem será invalida.

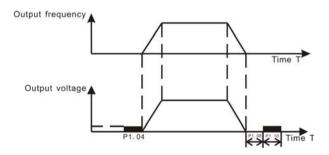


Figura 6.4 - Diagrama de Frenagem DC

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P1.10	Tempo de Zona morta FWD/REV	0.0~3600.0s	0.0~3600.0	0.0s

Ajuste de tempo de espera entre transição de sentido de rotação. Isto é demonstrado na figura abaixo:

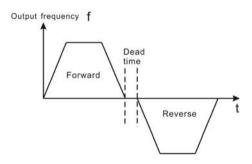


Figura 6.5 - Diagrama de zona morta FWD/VER

Código da função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P1.11	Habilita sentido de reversão FWD/REV.quando ligado	0:Desabilitado 1:habilitado	0~1	0

Nota:

- Esta função só tem efeito se a fonte do comando é o controle do terminal
- Se P1. 11 é ajustado em 0, quando ligado, o inversor não iniciará mesmo que o terminal FWD/REV esteja ativo, até que o terminal FWD/REV, seja desabilitado e habilitado novamente.
- Se P1. 11 é ajustado em 1, quando ligado e o terminal FWD/REV, estiver ativo o inversor iniciará automaticamente.
- Esta função pode fazer o inversor reiniciar automaticamente, por favor, tome cuidado.

6.3 P2 Grupo de parâmetros do motor

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P2.00	Opção G/P	0: modelo G 1: modelo P	0~1	0

- 0: Aplicável para carga de torque constante
- 1: Aplicável para carga de torque variável (por exemplo : ventiladores e bombas)

A série de inversores CHE possui a função integrada G/P. A potência do motor usada para carga de torque constante (modelo G) deve ser uma série menor do que a usada para carga de torque variável (modelo P)

Para mudar do modelo G para o modelo P. Siga as instruções abaixo.

- Ajuste P2. 00 em 1;
- Introduza os parâmetros do motor no grupo P2 novamente.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P2.01	Escala de potência do Motor	0.4~900.0kW	0.4~900.0	Depende do Modelo
P2.02	Escala de Freqüência do motor	0.01Hz~P0.04	0.01~P0.04	50.00Hz
P2.03	Escala de velocidade do motor	0~36000rpm	0~36000	Depende do Modelo
P2.04	Escala de tensão do motor	0~2000V	0~2000V	Depende do Modelo
P2.05	Escala de corrente do motor	0.8~2000.0A	0.8~2000.0	Depende do modelo

Nota:

- Para atingir um melhor desempenho, por favor, ajuste estes parâmetros de acordo com as características técnicas do motor, e então utilize o autoajuste.
- A escala de potência do inversor deve combinar com o motor utilizado. Se a polarização for muito ampla, o desempenho de controle do inversor será deteriorado distintamente. Reset P2.01 e ele incializará P2.02 ~ P2.10 automaticamente.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P2.06	Resistência do estator do	0.001~65.535Ω	0.001~65.535	Depende do modelo
P2.07	Resistência do Rotor do motor	0.001~65.535Ω	0.001~65.535	Depende do modelo
P2.08	Indutância da vazão do motor	0.1~6553.5mH	0.1~6553.5	Depende do modelo
P2.09	Indutância mutua do motor	0.1~6553.5mH	0.1~6553.5	Depende do modelo
P2.10	Corrente sem carga	0.01~655.35A	0.01~655.35	Depende do modelo

Depois do auto-ajsute o valor de P2. 06 ~ P2. 10 será atualizado automaticamente.

Nota:

Não mude estes parâmetros, caso contrário pode deteriorar o desempenho do controle do inversor.

6.4 - Grupo P3 - Controle Vetorial

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P3.00	Ganho proporcional K _p 1 ASR	0~100	0~100	20
P3.01	Tempo integral K _i 1 ASR	0.01~10.00s	0.01~10.00	0.50s
P3.02	Chaveamento no ponto 1 ASR	0.00Hz~P3.05	0.00~P3.05	5.00Hz
P3.03	Ganho proporcional K _p 2 ASR	0~100	0~100	25
P3.04	ASR Tempo Integral K _i 2 ASR	0.01~10.00s	0.01~10.00	1.00s
P3.05	Chaveamento no ponto 2 ASR	P3.02~P0.04	P3.02~P0.04	10.00Hz

P3. 00 ~ P3. 05 São válidos somente para controle vetorial e controle de torque e inválidos para controle V/F. Através do P3. 00 ~P3. 05, o usuário pode configurar o ganho KP proporcional e o tempo Ki integral do regulador de velocidade (ASR), para mudar as características de resposta de velocidade. A estrutura do ASR é mostrada abaixo.

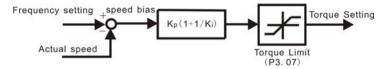


Figura 6.6 - Diagrama ASR.

P3.00 e P3.01 Só tem efeito quando a freqüência de saída é menor do que P3.02. P3.03 e P3.04 só tem efeito quando a freqüência de saída é maior do que P3.05. Quando a saída de freqüência está entre P3. 02 e P.05, Kp e Ki são proporcionais a polarização entre P3. 02 e P3.05. Para detalhes, por favor, consulte a figura seguinte.

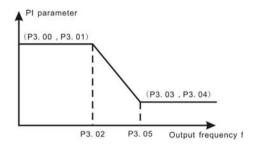


Figura 6.7 Diagrama do Parâmetro PI

A resposta dinâmica do sistema pode ser mais rápida se o ganho proporcional de KP é otimizado, entretanto, se Kp for muito grande o sistema se tornará instável.

A resposta dinâmica do sistema pode ser mais rápida se o tempo Ki integral for diminuído, entretanto, se Ki for muito pequeno o sistema começa a apresentar sobre sinal se tornará instável.

P3.00 e P3.01 São correspondentes a Kp e Ki em alta freqüência. Por favor, ajuste estes parâmetros de acordo com a situação atual. O procedimento de ajuste é descrito a seguir:

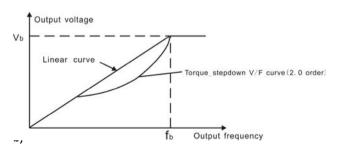
- Aumente o ganho proporcional (Kp) o máximo possível se gerar oscilação.
- Reduza o tempo integral (Ki) o máximo possível sem criar oscilação.

Para maiores detalhes, por favor, consulte a descrição do grupo P9.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P3. 06	Escala de compensação de escorregamento de VC	50.0~200.0%	50.0~200.0	100%

O parâmetro é usado para ajustar o escorregamento de freqüência do controle vetorial e aperfeiçoar a precisão do controle de velocidade. Ajustando apropriadamente o parâmetro de polarização (BIAS) restringirá a polaridade de velocidade estática.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P3.07	Limite de torque	0.0~200.0%	0.0~200.0	150.0%


Este parâmetro é usado para limitar a saída de corrente de torque pelo regulador de velocidade. O valor de limite de torque $0.0 \sim 200\%$ é o percentual da escala de corrente do inversor.

6.5 Grupo P4 - Controle V/F

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P4.00	Seleção de curva V/F	0:curva linear 1:curva de torque (curva de ordem 2)	0~1	0

- 0: É aplicável para uma carga de torque constante.
- 1: Torque de ordem 2. É aplicável para carga de torque variável, como sopradores, bombas entre outros.

Por favor, consulte a figura a seguir:

c) Figura 6.8 - Diagrama de curva V/F

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P4.01	Otimização do torque	0.0%: (auto) 0.1□~10.0□	0.0~10.0	0.0□
P4.02	Interrupção da otimização do torque	0.0%~50.0% (motor rated frequency)	0.0~50.0	20.0%

A otimização de torque deverá ter efeito quando a freqüência de saída é menor que a interrupção da otimização do torque (P4.02). A otimização do torque pode melhorar o desempenho do controle V/F em baixa velocidade.

O valor de otimização de torque deverá ser determinado pela carga. Quanto maior for a carga, maior será o valor.

NOTA: P4.01 não deve ser muito grande, caso contrário o motor sobre aquecerá, ou o inversor sofrerá dano de sobre corrente ou sobre carga.

Se P4.01 for ajustado em 0, o inversor otimizará o torque de saída de acordo com a carga automaticamente.

Por favor, consulte o diagrama a seguir:

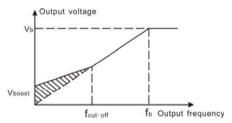


Figura 6.9 – DIAGRAMA de otimização de torque manual

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P4. 03	Limite de compensação de escorregamento V/F	0.00~200.0%	0.00~200.00	0.0%

A função de compensação de escorregamento calcula o torque do motor de acordo com a corrente de saída e compensa para a freqüência de saída. Esta função é usada para melhorar a eficiência de velocidade quando estiver operando em carga.

P4.03 ajusta o limite de compensação de escorregamento como a porcentagem da escala de escorregamento do motor, sendo esta porcentagem de 100%.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P4.04	Seleção do modo econômico de energia automático	0: Desabilitado 1: Habilitado	0~1	0

Quando P4. 04 é ajustado em 1, enquanto a carga for leve reduzirá a tensão de saída do inversor economizando energia.

6.6 Grupo P5 - Terminais de Entrada

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P5.00	Função do Terminal S1	Terminal multifuncional programável	0~25	1
P5.01	Função do Terminal S2	Terminal multifuncional programável	0~25	4
P5.02	Função do Terminal S3	Terminal multifuncional programável	0~25	7
P5.03	Função do Terminal S4	Terminal multifuncional programável	0~25	0

O significado de cada configuração é mostrado na tabela a seguir:

Valor	Função	Descrição	
0	Invalido	Por favor, configure os terminais que não são usados como inválidos para evitar o mau funcionamento.	
1	Forward	Desferies consulte e decesios de DE OF	
2	Reverse	Por favor, consulte a descrição de P5. 05	
3	3-wire control	Por favor, consulte a descrição de P5. 05	
4	Jog forward	Des favor consulta a decesição de DO CO DO CA	
5	Jog reverse	Por favor, consulte a descrição de P8.02~P8.04.	
6	Parada por Inércia	O inversor bloqueia imediatamente a saída. O motor para por inércia mecânica.	
7	Reset de Falhas	Reset as falhas que ocorreram. Ele terá a mesma função que a tecla STOP/RST.	
8 Falha da		Para o inversor e dispara um alarme quando ocorre uma	
	Entrada Externa	falha em algum dispositivo periférico.	

9	Comando Up	pelo comando	e freqüência do invers UP e comando Down		
10	Comando DOWN	K1 K2 K3	DOWN UP/DOWN		
11	Limpa UP/DOWN		inal para limpar config sulte a descrição do P		
12	Referência 1 do Multispeed		do controle de velo a combinação destes 4		
13	Referência 2 do Multispeed		detalhes, por favor, c		
14	Referência 3 do Multispeed	tabela de valores dos estágios correspondentes.			
		2 grupos de tempos de aceleração e desaceleração podem ser selecionados pela combinação testes 2 terminais.			
15	Seleção de Tempo de	Terminal	Tempo ACC/DEC	Parâmetro Correspondente	
	aceleração e desaceleração	OFF	Tempo de Aceleração 0	P0.08 P0.09	
		ON	Tempo de Desaceleração 1	P8.00□P8.01	
16	Pausa no PID	O ajuste será freqüência est	pausado e o inversor ı ável.	manterá a saída e	
17	Pausa na Operação	O inversor mantém a saída de freqüência estável. Se este terminal for desabilitado, o inversor continuará a			
	Transversal		nsversal da freqüência		
18	Reset Operação Transversal	Referência de freqüência do inversor será forçada como freqüência central de operação transversal			
	Aceleração/	Pausar a acele	eração e a desacelera	ção mantendo a	
19	Desaceleração	saída de freqüência. Quando este terminal é habilitado,			
	ramp hold	a aceleração e a desaceleração é reiniciado.			

20	Desabilita Controle do Torque	Controle do torque é desabilitado. O inversor trabalhará no modo de controle de velocidade.
21	Up/Down temporariamente invalida	A configuração UP/Down é inválida e não poderá ser limpo.Quando este terminal é desabilitado. Configurar Up/Down antes de ser válidado novamente.
22~25	Reservado	Reservado

Estado do terminal de referência multispeed e tabela de valores dos estágios correspondentes.

Terminal	Referência 1	Referência 2 de Multispeed	Referência 3 de Multispeed
Estágio	de Multispeed	de Multispeed	de Multispeed
0	OFF	OFF	OFF
1	ON	OFF	OFF
2	OFF	ON	OFF
3	ON	ON	OFF
4	OFF	OFF	ON
5	ON	OFF	ON
6	OFF	ON	ON
7	ON	ON	ON

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P5.04	Liga/desliga tempo dos filtros	1~10	1~10	5

Este parâmetro é usado para configurar a força do filtro dos terminais (S1 \sim S4). Quando há interferência pesada, o usuário deve aumentar para prevenir o mau funcionamento.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fabrica
P5.05	FWD/REV Modo de Controle	0: modo 1 de controle a 2 fios 1: modo 2 de controle a 2 fios 2: modo 1 de controle a 3 fios 3: modo 2 de controle a 3 fios	0~3	0

Este parâmetro define 4 diferentes modos de controle que controla a operação do inversor através dos terminais externos.

0: modo 1 de controle a 2 fios: integrado comando Start/Stop com direção de funcionamento.

K1	K2	Run command
OFF	OFF	Stop
ON	OFF	FWD
OFF	ON	REV
ON	ON	Stop

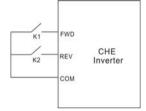


Figura 6.10 Modo 1 de controle a 2 fios.

1: modo 2 de controle a 2 fios : Start/stop comando determinado pelo terminal FWD. Direção de função é determinado pelo terminal Rev.

K1	K2	Comando Run
OFF	OFF	Stop
ON	OFF	FWD
OFF	ON	Stop
ON	ON	REV

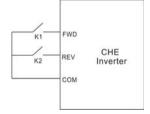


Figura 6.11 Modo 2 de controle a 2 fios

2: modo 1 contorle a 3 fios

SB1: tecla Start SB2: tecla Stop (NC)

K: tecla de direção de funcionamento (Run direction)

62

O terminal SIn \acute{e} um terminal de entrada multifuncional de S1 \sim S4. A função do terminal de ser ajustada em 3 (controle a 3 fios).

K	Comando Run
OFF	Stop
ON	FWD

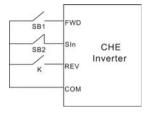


Figura 6.12 Modo 1 de conrole a 3 fios

3: modo 2 controle a 3 fios

SB1: tecla FWD SB2: tecla Stop (NC) SB3: Reverse tecla RUN

O terminal SIn \acute{e} um terminal de entrada multifuncional de S1 \sim S4. A função deve ser ajustada em 3 (controle a 3 fios)

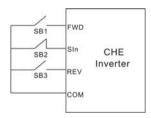


Figura 6.13 Modo 2 de controle a 3 fios

Nota: Quando o modo de controle a 2 fios esta ativo , o inversor não funcionará nas seguintes situações mesmo se o terminal FWD/REV.estiver habilitado :

- Coast to stop (pressione Run e stop/RST ao mesmo tempo).
- Comando de parada (stop command) da comunicação serial

O terminal FWD/Rev. É habilitado antes de ligar o equipamento. Por favor, consulte a descrição de P1. 11.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P5.06	Mudança da escala de configuração UP/DOWN	0.01~50.00Hz/s	0.01~50.00	0.50Hz/s

O Terminal UP/Down regula taxa incremental de configuração de freqüência.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P5.07	Al 1 abaixo do limite	0.00V~10.00V	0.00~10.00	0.00V
P5.08	Al1- Abaixo do correspondente à configuração	-100.0%~100.0%	-100.0~100.0	0.0%
P5.09	Al1 acima do limite	0.00V~10.00V	0.00~10.00	10.00V
P5.10	Al1 acima do limite correspondente a configuração	-100.0%~100.0%	-100.0~100.0	100.0%
P5.11	Tempo constante do filtro Al1	0.00s~10.00s	0.00~10.00	0.10s

Estes parâmetros determinam o relacionamento entre tensão de entrada analógica e valor de configuração correspondente. Quando a tensão analógica de entrada excede o range entre abaixo do limite e acima do limite, será considerado como acima do limite ou abaixo do limite.

A entrada analógica Al 1 é somente uma entrada de tensão , e seu range é de 0V ~ 10V. Para diferentes aplicações, o valor correspondente a 100% analógico ajustado é diferente. Para maiores informações, por favor, consulte a descrição de cada aplicativo.

Nota: Al 1 abaixo do limite deve ser menor ou igual que Al 1 acima do limite.

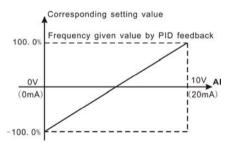


Figura 6.14 Relação entre AI e a configuração correspondente.

Al 1 tempo de filtro constante é efetivo quando existem mudanças repentinas ou ruídos no sinal da entrada analógica. As respostas diminuem enquanto aumentam as configurações.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P5.12	Al2 abaixo do limite	0.00V~10.00V	0.00~10.00	0.00V
P5.13	Al2 configuração correspondente abaixo do limite	-100.0%~100.0%	-100.0~100.0	0.0%
P5.14	Al2 acima do limite	0.00V~10.00V	0.00~10.00	10.00V
P5.15	Al2 configuração correspondente acima do limite	-100.0%~100.0%	-100.0~100.0	100.0%
P5.16	Al2 Tempo constante do filtro	0.00s~10.00s	0.00~10.00	0.10s

Por favor, consulte a descrição de Al1. Quando Al2 é ajustado como corrente de entrada 0 ~ 20mA, a escala de tensão correspondente será de 0 ~ 5V.

6.7 Grupo P6 - Terminais de Saída

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P6.00	Seleção saída Y	Saída do coletor aberto	0~10	1
P6.01	Seleção de relê de saída	Rele de saída	0~10	3

Rele de saída OC / estão indicados na tabela abaixo:

Configuração Valor	Função	Descrição		
0	Sem Saída	O terminal de saída não tem função		
1	Funcionamento em sentido Horário	ON: Durante funcionamento em sentido horário		
2	Funcionamento em sentido anti- horário	ON: Durante funcionamento em sentido anti-horário		
3	Falha de saída	ON: O inversor está em estado de falha		
4	FDT alcançado	Por favor, consulte a descrição de P8. 13 e P8. 14		
5	Freqüência alcançada	ON: A freqüência de funcionamento do inversor é zero.		
6	Funcionamento em velocidade Zero	ON: A freqüência de funcionamento do inversor é zero		

7	Freqüência acima do limite alcançada	ON: A freqüência de funcionamento alcança o valor de P0.05.
8	Freqüência abaixo do limite alcançada	ON: A freqüência de funcionamento alcança o valor de P0.06.
9~10	Reservado	Reservado

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P6.02	Seleção AO	Saída analógica Multifuncional	0~10	0

Corrente (0~20mA) ou tensão (0~10V) a saída pode ser selecionada pelo Jumper J15. Funções AO estão indicadas na tabela a seguir:

Configuração Valor	Função	Range	
0	Freqüência de Funcionamento	0Freqüência máxima (P0.04)	
1	Referência de Freqüência	0Freqüência máxima (P0.04)	
2	Velocidade do Motor	0~2* velocidade sincronizada do motor	
3	Corrente de saída	0~2* classificação de corrente do inversor	
4	Tensão de saída	0∼1.5* classificação de tensão do inversor	
5	Potência de Saída	0∼2* classificação da potência	
6	Torque de saída	0~2*classificação da corrente	
7	Al1 Tensão	0~10V	
8	Al2 Tensão/corrente	0~10V/0~20mA	
9~10	Reservado	Reservado	

Código da Função	Nome	Descrição	Configuração de Range	Configuração de Fábrica
P6.03	AO Abaixo do Limite	0.0%~100.0%	0.0~100.0	0.0%
P6.04	AO abaixo do correspondente a saída	0.00V ~10.00V	0.00~10.00	0.00V

P6.05	AO Acima do limite	0.0%~100.0%	0.0~100.0	100.0%
P6.06	AO acima do limite correspondente a saída	0.00V ~10.00V	0.00~10.00	10.00V

Estes parâmetros determinam a relação entre tensão/corrente de saída analógica e o valor de saída correspondente. Quando o valor da saída analógica excede o range entre abaixo do limite e acima do limite, sairá acima do limite ou abaixo do limite.

Quando AO é corrente de saída, 1mA é correspondente a 0,5V.

Para diferentes aplicações o valor correspondente a 100% da saída analógica é diferente.

Para detalhes, por favor, consulte a descrição para cada aplicação.

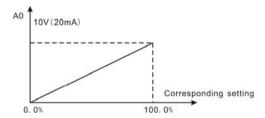


Figura 6.15 Relação entre AO e a configuração correspondente

Seção 5.02 6.8 Grupo P7-Parâmetros da IHM

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P7.00	Senha	0~65535	0~65535	0

A função de proteção da senha será valida quando for configurada com uma informação diferente de 0. Quando P7.00 é diferente de 00000, a senha do usuário configurada anteriormente será apagada e a função de proteção da senha será desabilitada.

Depois que a senha for configurada e seja validada, o usuário não pode acessar o menu se a senha do usuário estiver errada. Somente quando a senha do usuário é usada, o usuário pode ver e modificar parâmetros. Por favor lembre-se da senha do usuário.

Código da Função	Nome	Descrição	Configuração de Range	Configuração de Fabrica
P7.01	Seleção do Idioma - LCD	0: Chinese 1: English	0~1	0
P7.02	Copia parametro	0: linvalido 1: Upload 2: Download	0~2	0

P7.02 Terá efeito a IHM LCD é usada.

- 1: todos os valores dos parâmetros serão up-load do inversor para a IHM LCD.
- 2: Os valores dos parâmetros serão download serão baixados do LCD para o inversor

Nota : quando a operação up-load e/ou down load estiver completada P7.02 será configurado em 0 automaticamente .

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P7. 03	QUICK/JOG Seleção de função	0: Jog 1:FDW/REV switching 2: Clear UP/DOWN setting	0~2	0

QUICK/JOG é uma tecla multifunção, sua função é definida no parametro P7.03.

- 0: Jog: Pressione QUICK/JOG , o inversor funcionará pelo modo Jog.
- 1: Alternar FWD/REV : Pressione QUICK/JOG, o inversor mudará o sentido de rotação. Somente válido se P0.03 está configurado para 0.
- 2: Limpar a configuração UP/DOWN: Pressione QUICK/JOG, a configuração UP/DOWN será limpa.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P7.04	função da opção STOP/RST	0: Válido quando o parâmetro P0.01=0 1: Válido quando o parâmetro P0.01=0 ou a entrada de controle for igual a 1. 3: Válido quando o parâmetro P0.01=0 ou o controle de comunicação for igual a 2. 4:Sempre válido	0~3	0

OBSERVAÇÃO:

- O valor de P7.04 determina a parada para a função STOP/RST.
- O reset da função STOP/RST é sempre válida.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P7.05	Seleção IHM	O: Preferencialmente a IHM externa 1: Funciona as 2 IHM's, porém somente a IHM externa é válida. 2:funciona as 2 IHM's, porém somente a IHM local é valida 3:funciona as 2 IHM's e as 2 IHM's são válidas.	0~3	0

- 0: Quando existe IHM externa, a IHM local será inválida.
- 1: IHM local e externa simultânea, somente as teclas da IHM externa serão válidas.
- 2: IHM local e externa simultânea, somente as teclas da IHM local serão válidas.
- 3: IHM local e externa simultânea, as teclas das IHM's local e externa serão válidas.

Observação: Essa função deve ser usada com atenção, caso contrário pode ocorrer um mau funcionamento.

OBSERVAÇÃO:

- Quando P7.05 é configurado para 1, a IHM local é valida se a IHM externa não está conectada.
- Quando a IHM externa está conectada, P7.05 deve ser configurado para 0.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P7.06	Seleção do estado do display com o inversor em trabalho	0~0x7FFF	0~0x7FFF	0xFF

P7.06 define o parâmetro que deve ser mostrado pelo LED em estado de funcionamento. Se o Bit é 0, o parâmetro não será mostrado; Se o Bit é 1, o parâmetro será mostrado. Pressione SHIFT para passar esses parâmetros em ordem direita. Pressione DATA/ENT + QUICK/JOG para passar esses parâmetros em ordem esquerda.

O conteúdo do display correspondente para cada bit do P7.06 é descrito na seguinte tabela:

BIT7	BIT6	BIT	5	ВІ	T4	В	IT3	ВІ	T2	В	IT1		BIT0
Torque de Saída	Potência de Saída	Velocio de Rotaç		d	ente le ída	(nsão de aída		ão do m.DC	(erencia de üência		reqüência le Saída
BIT15	В	IT14	ВІТ	Γ13	BIT	12	BI'	T11	BIT	10	BIT9		BIT8
Reservad		passo i-speed	А	12	Al	1	terr	tado do ninal Saída	Estad term de Entr	inal e	Realin PID	n.	Presset PID

Por exemplo, se o usuário necessite que no display apareça a tensão de saída, tensão do barramento DC, referencia de freqüência, saída de freqüência, estado do terminal de saída, o valor de cada bit deve ser como na tabela abaixo:

BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
0	0	0	0	1	1	1	1
BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
0	0	0	1	0	0	0	0

O valor P7.06 é 100Fh.

Observação: Estado do terminal I/O é mostrado em decimal.

Para detalhes, por favor, consulte a descrição do P7.18 e P7.19.

· dia detailes, per lavel, concente à decenção de l'ille e l'ille									
Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica					
P7.07	Seleção do parâmetro mostrado no display com o inversor em stop	0~0x1FF	0~0x1FF	0xFF					

P7.07 determina o parâmetro mostrado no display com o inversor em stop. O método de configuração é similar com P7.06.

O conteúdo correspondente para cada bit do P7.07 é descrito na seguinte tabela:

	ilicudo i	oon coponacine pe	ila bada bil	4017.07	s accounte ii	a ocganic tabl	Jiu.
BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
Al2	Al1	Realimentação PID	Presset PID	Estado do terminal de saída	Estado do terminal de entrada	Tensão do barramento DC	Referencia de frequencia

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
Reservado	Nº do passo multi- speed						

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P7.08	Temperatura do modulo retificador	0~100.0□		
P7.09	Temperatura do modulo IGBT	0~100.0□		
P7.10	Versão do software			
P7.11	Tempo acumulado de funcionamento	0~65535h		

Temperatura do módulo retificador: Indica a temperatura do modulo retificador. Ponto de proteção de sobre aquecimento.

Temperatura do módulo IGBT: Indica a temperatura do modulo IGBT. Ponto de proteção de sobre aquecimento.

Versão do Software: Indica a versão do software corrente do DSP.

Tempo de funcionamento acumulado: Mostra o tempo de funcionamento acumulado do inversor.

Observação: Os parâmetros acima são somente de leitura.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P7.12	3º ultima falha	0~24		
P7.13	Penúltima falha	0~24		
P7.14	Falha corrente	0~24		

Esses parâmetros armazenam o tipo dos 3 últimos alarmes. Para mais detalhes, por favor, consulte a descrição do capitulo 7.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P7.15	Saída de freqüência com falha de corrente.	Saída de freqüência com falha de corrente.		
P7.16	Saída de corrente com falha de corrente.	Saída de corrente com falha de corrente.		
P7.17	Barramento DC com falha de corrente.	Barramento DC com falha de corrente.		
P7.18	Estado do Terminal de Entrada	Este valor é gravado como estado do terminal de entrada. E o significado de cada bit é como a tabela abaixo: BIT3 BIT2 BIT1 BIT0 S4 S3 S2 S1 1 Indica que o terminal de entrada é correspondente a ON, enquanto 0 indica OFF. Nota: Este valor é mostrado como decimal.		
P7.19	Estado do terminal de saída	Este valor é gravado como estado do terminal de saída. E o significado de cada bit é como a tabela abaixo: BIT3 BIT2 BIT1 BIT0 RO Y 1 Indica que o terminal de entrada é correspondente a ON, enquanto 0 indica OFF. Nota: Este valor é mostrado como decimal.		

6.9 Grupo P8- Funções de Otimização

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P8.00	Tempo de aceleração 1	1.0~3600.0s	1.0~3600.0	20.0s
P8.01	Tempo de desaceleração 1	1.0~3600.0s	1.0~3600.0	20.0s

Para detalhes, por favor, consulte a descrição de P0.08 e P0.09.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P8.02	Referência de JOG	0.00~P0.04	0.00~ P0.04	5.00Hz
P8.03	Tempo de aceleração JOG	0.1~3600.0s	0.1~3600.0	Depende do modelo
P8.04	Tempo de desaceleração JOG	0.1~3600.0s	0.1~3600.0	Depende do modelo

O significado e a configuração de fábrica P8.03 e P8.04 é o mesmo do parâmetro P0.08 e P0.09. Não importa quais são os valores do P1.00 e P1.05, o jog iniciará em modo direto e desaceleração do modo de parada.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P8.05	Freqüência de Salto	0.00~P0.04	0.00~P0.04	0.00Hz
P8.06	Largura da banda de Freqüência de Salto	0.00~P0.04	0.00~P0.04	0.00Hz

Quando configurado o parâmetro salto de freqüência, o inversor pode manter a distância de ressonância mecânica com a carga. P8.05 é o valor central da freqüência a ser saltado.

NOTA:

- Se P08.06 é 0 a função de salto é inválida.
- Se P8.05 é 0, a função de salto é inválida não importa o que seja P8.06.
- A operação é proibida dentro da largura da banda de freqüência de salto, mas aceleração e desaceleração suave sem o salto.

A relação entre frequência de funcionamento e referencia de frequência é mostrada na figura abaixo:

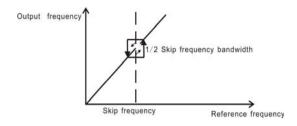


Figura 6.16 Diagrama de freqüência de salto.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P8.07	Amplitude transversal	0.0~100.0%	0.0~100.0	0.0%
P8.08	Freqüência oscilante	0.0~50.0%	0.0~50.0	0.0%
P8.09	Tempo de subida transversal	0.1~3600.0s	0.1~3600.0	5.0s
P8.10	Tempo de descida transversal	0.1~3600.0s	0.1~3600.0	5.0s

Operação transversal é amplamente usada em indústria têxtil e de fibra química. A aplicação comum é mostrada na figura abaixo:

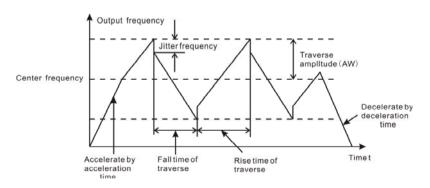


Figura 6.17 Diagrama de operação transversal.

A frequência central (CF) é a frequência de referência.

Amplitude transversal (AW) = freqüência central (CF) *P8.08%

Freqüência oscilante = amplitude transversal (AW) *P8.08%

Tempo de subida transversal: Indica o tempo de aumento da freqüência transversal mais baixa para a freqüência transversal mais alta.

Tempo de descida transversal = Indica o tempo de diminuição da freqüência transversal mais alta para a freqüência transversal mais baixa.

NOTA:

- O parâmetro P8.07 determina o range da freqüência de saída que é baixo.
- (1-P8.07%)* referência de frequência é >= frequência de saída =< (1 + P8.07%)* referência de frequência
- A freqüência transversal de saída é limitada pelo limite máximo de freqüência (P0.05) e freqüência de limite mínimo (P0.06).

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P8.11	Tempo de Auto Reset	0~3	0~3	0
P8.12	Intervalo entre reset	0.1~100.0s	0.1~100.0	1.0s

A função de auto reset pode reajustar as falhas nos momentos e intervalos presentes. Quando P8.11 é ajustado em 0, significa "auto ajuste" e o dispositivo de proteção será ativado em caso de falhas.

NOTA: As falhas tais como: Saída 1, Saída 2, Saída 3, OH 1 e OH2 não pode ser reajustado automaticamente.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P8.13	Nível FDT	0.00~ P0.04	0.00~ P0.04	50.00Hz
P8.14	Atraso FDT	0.0~100.0%	0.0~100.0	5.0%

Quando a freqüência de saída atingir uma determinada freqüência de pré-ajuste (nível FDT), saída de terminal emitirá um sinal ON-OFF até que a freqüência de saída caia abaixo de um nivel de freqüência FDT (nivel FDT – defazagem de FDT), como mostrado na figura a seguir:

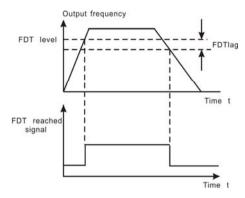


Figura 6.18 Diagrama de nível de FDT e defasagem.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P8.15	Range de Detecção de Freqüência	0.0~100.0%□Freqüência maxima□	0.0~100.0	0.0%

Quando a frequência de saída está dentro da variação da referência de frequência, um sinal ON-OFF será emitido.

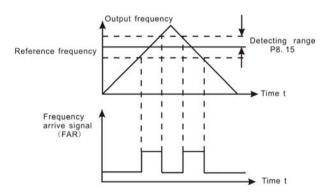


Figura 6.19 Diagrama de range de detecção de frequência

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P8.16	Tensão de Disparo de Frenagem	115.0~140.0%	115.0~140.0	Depende do Modelo

Quando a tensão de barramento DC for maior que o valor do parametro P8.16, o inversor iniciará a frenagem dinâmica.

Observação:

- A configuração de fábrica é de 120% se a tensão do inversor for 220V.
- A configuração de fábrica é de 130% se a tensão do inversor for 380V.
- O valor do parametro P8.16 corresponde a tensão do barramento DC como tensão de entrada.

Código da função	Nome	Descrição	Configuração do range	Valor padrão
P8.17	Coeficiente de velocidade de rotação	0.1~999.9%	0.1~999.9%	100.0%

Este parâmetro é usado para calibrar as bias entre velocidade mecânica atual e velocidade de rotação. Segue abaixo a fórmula:

Velocidade mecânica atual = 120 * freqüência de saida *P8.17 / Número de pólos do motor.

Seção 5.03 6.10 Grupo P9—Controle PID

O controle de PID é um método normalmente usado em processo de controle, tais como fluxo, pressão e controle de temperatura. O principal primeiramente detecta as BIAS entre o valor pre-programado e o valor de realimentação, e então calcula a freqüência do inversor de acordo com o ganho proporcional, tempo integral e diferencial. Por favor consulte a figura abaixo:

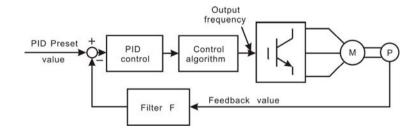


Figura 6.20 Diagrama do controle PID.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P9.00	Seleção do Presset do PID	0: IHM 1: Entrada analógica 1 (Al1) 2: Entrada analógica 2 (Al2) 3: Comunicação 4: Multi-speed	0~4	0
P9.01	Presset do PID pela IHM	0.0%~100.0%	0.0~100.0	0.0%
P9.02	Seleção de Realimentação do PID	0: Al1 1: Al2 2: Al1+Al2 3: Communicação	0~3	0

Estes parâmetros são usados para selecionar o presset de PID e a fonte de realimentação.

Observação:

- O valor do presset e o valor da realimentação do PID são valores em porcetagem.
- 100% do valor do presset é correspondente a 100% so valor da realimentação
- A fonte do presset e da realimentação não pode ser a mesma, caso contrário o PID oferecerá um mau funcionamento.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P9.03	Caracteristicas da saida do PID	0: Positivo 1: Negativo	0~1	0

- 0: Positivo: Quando o valor a realimentação for maior do o valor do presset, a freqüência de saída diminuirá, tais como controle de tensão em aplicações de ventilação.
- 1: Negativo: Quando o valor da realimentação for maior do que o valor do presset, a freqüência de saída aumentará, tais como o controle de tensão em aplicações de antiventilação.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P9.04	Ganho proporcional (Kp)	0.00~100.00	0.00~100.00	0.10
P9.05	Tempo Integral (Ti)	0.01~10.00s	0.01~10.00	0.10s
P9.06	Tempo diferencial (Td)	0.00~10.00s	0.00~10.00	0.00s

- Optimize a resposta ajustando os parametros enquando direciona uma carga atual
- Aiuste do controle PID:
- Siga o procedimento a seguir para ativar o controle de PID e então ajuste-o enquanto monitora a resposta:
- 3. Habilita contro PID (P0.03=5)
- 4. Aumenta a proporção de ganho (Kp) o máximo possível sem gerar instabilidade.
- 5. Reduz o tempo integral (Ti) o máximo possével sem criar instabilidade.
- 6. Aumenta o tempo derivativo (Td) o máximo possível sem criar instabilidade.
- Fazendo ajustes finos:
- Primeiro ajuste as constantes individuais do controle PID e faça um ajuste fino.
- Redução de sobre-sinal
- Se ocorrer sobre-sinal, diminua o tempo derivativo aumento o tempo integral.

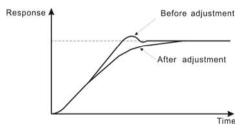


Figure 6.21 Diagrama de redução sobre-sinal

- Estabilizando rapidamente o estado de controle
- Para estabilizar rapidamente as condições de controle mesmo quando ocorre sobre-sinal, diminua o tempo integral e aumente o tempo derivativo.

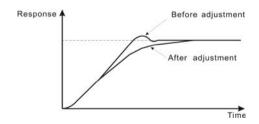


Figure 6.22 Diagrama de redução da oscilação sobre-sinal

Redução da oscilação de longo ciclos

 Se ocorrer oscilação com ciclos maiores do que o tempo de configuração do tempo integral, significa que essa operação integral está errada.

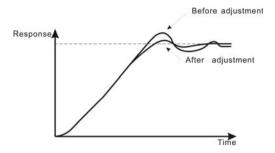


Figure 6.23 Diagrama de redução de ciclo longo de oscilação

 Se a ocilação não pode ser reduzida mesmo se configurar o tempo derivativo a 0, então diminua o tempo proporcional ou aumente o tempo constante do atrazado do PID primário.

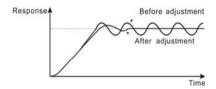


Figura 6.24 Diagrama de Redução de ciclo curto de ocilação

Se a ocilação não pode ser reduzida mesmo se configurar o tempo derivativo a 0, então diminua o tempo proporcional ou aumente o tempo constante do atrazado do PID primário.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P9.07	Tempo de amostragem (T)	0.01~100.00s	0.01~100.00	0.10s
P9.08	limite de Bias	0.0~100.0%	0.0~100.0	0.0%

O tempo de amostragem (T) refere-se ao ciclo de mostragem do valor da realimentação.

O regulador PI calcula uma vez em cada ciclo de mostragem. Quanto maior o ciclo de mostragem, mais baixa é a resposta.

O limite de Bias define o Bias máximo entre a realimentação e o preset.O PID para de funcionar quando o bias estiver dentra dessa escala. Para garantir estabilidade e precisão do sistema de saída é necessário configurar estes parâmetros corretamente.

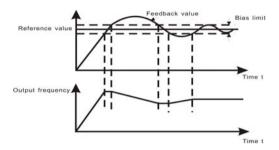


Figura 6.25 Relação entre limite de Bias e frequência de saída

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P9.09	Valor de detecção de Perda da Realimentação	0.0~100.0%	0.0~100.0	0.0%
P9.10	Tempo de Detecção de Perda da Realimentação	0.0~3600.0s	0.0~3600.0	1.0s

Quando o valor de realimentação é menor do que P9.09 continuamente para o período determinado pelo P9.10, o inversor indicará falha, caso perca-se a realimentação (PID). Observação: 100% do P9.09 é o mesmo que 100% do P9.10

Seção 5.04 6.11 Grupo PA - Controle Multi-Speed

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
PA.00	Multi-speed 0	-100.0~100.0%	-100.0~100.0	0.0%
PA.01	Multi-speed 1	-100.0~100.0%	-100.0~100.0	0.0%
PA.02	Multi-speed 2	-100.0~100.0%	-100.0~100.0	0.0%
PA.03	Multi-speed 3	-100.0~100.0%	-100.0~100.0	0.0%
PA.04	Multi-speed 4	-100.0~100.0%	-100.0~100.0	0.0%
PA.05	Multi-speed 5	-100.0~100.0%	-100.0~100.0	0.0%
PA.06	Multi-speed 6	-100.0~100.0%	-100.0~100.0	0.0%
PA.07	Multi-speed 7	-100.0~100.0%	-100.0~100.0	0.0%

Observação

- 100% do multi-speed x correspondente a frequencia maxima(P0.04).
- Se o valor do multi-speed x é negativo, a direção desse passo será reverso , caso contrario será sentido horário.
- Função Multi-speed terá alta prioridade.

Seleção do passo é determinado pela combinação dos terminais multi-speed. Por favor consulte a seguinte tabela e figura

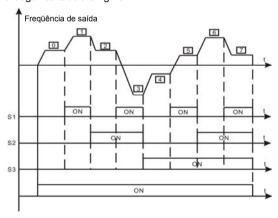


Figura 6.26 Diagrama de operação multi-speed.

Terminal Passo	Multi-speed referencia1	Multi-speed referencia2	Multi-speed referencia3
0	OFF	OFF	OFF
1	ON	OFF	OFF
2	OFF	ON	OFF
3	ON	ON	OFF
4	OFF	OFF	ON
5	ON	OFF	ON
6	OFF	ON	ON
7	ON	ON	ON

Seção 5.05 6.12 Grupo PB- Funções de proteção

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
PB.00	Proteção de Sobrecarga do Motor	0:Desabilitado 1:Motor normal 2:Freqüência variavel do motor	0~2	2

- 1: Para motor normal, a baixa velocidade, menos eficiente será a refrigeração.Baseado nesse conceito, se a saida de frequencia for menor que 30Hz, o inversor reduzirá o ponto de disparo para proteção de sobrecarga do motor.
- 2:Como o efeito de refrigeração da frequencia variavel do motor não tem ligação com a velocidade de funcionamento, não é obrigatório ajustar o disparo da proteção de sobrecarga do motor.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
PB.01	Proteção de Sobre corrente no Motor	20.0%~120.0%	20.0~120.0	100.0%

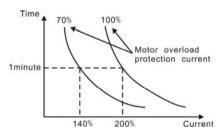


Figura 6.27 Curva de proteção de sobrecarga no motor.

O valor pode determinado pela seguinte fórmula:

Proteção de sobre carga de corrente no motor=escala de corrente do motor/ escala de corrente do motor)* 100%

Observação:

- Esse parâmetro é normalmente usado quando a escala de potência do inversor é maior que a potência de saída do motor.
- Tempo de proteção de sobrecarga no motor :60s com 200% da escala de corrente. Para detalhes, consultar a figura acima.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
PB.02	Disparo para funcionamento do motor por inércia	70.0~110.0%	70.0~110.0	80.0%
PB.03	Taxa de redução para funcionamento do motor por inércia	0.00Hz~P0.04	0.00Hz~P0.04	0.00Hz

Se PB.03 é ajustado para 0, o funcionamento do motor por inércia é invalido.

Funcionamento do motor por inércia é habilitado para performace de compensação de baixa tensão quando o barramento de tensão DC cai abaixo PB.02. O inversor pode continuar ligado sem funcionamento por inércia para reduzir a saída de freqüência e realimentção de energia via motor.

Observação: Se PB.03 é grande, a realimentação de energia do motor será grande também e pode causar falha de sobre voltagem.Se PB0.03 é pequeno, a realimentação de energia do motor será pequena para ativar o efeito da compensação de tensão. Por favor ajuste PB.03 de acordo com a inércia da carga e a carga atual.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
PB.04	Poteção contra sobre carga de parada	0: Habilitado 1:Desabilitado	0~1	1
PB.05	Ponto de proteção contra sobre carga de parada	110~150%	110~150	380V:130% 220V:120%

Durante a desaceleração, a escala da desaceleração do motor pode ser menor que a freqüência de saída do inversor devido a carga de inércia. Nesse momento, o motor retornará energia para o inversor, resultando um aumento da tensão DC. Se não for feito a medição o inversor sofrerá uma alteração devido a sobre tensão.

Durante a desaceleração, o inversor detecta o barramento de tensão DC e o compara com o ponto de proteção contra sobrecarga de parada. Se a tensão do barramento DC exceder o PB.05, o inversor irá parar reduzindo a freqüência de saída. Quando a tensão do barramento DC é menor que PB.05, a desaceleração continua, como mostrada na seguinte figura.

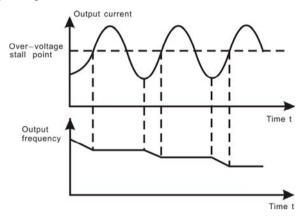


Figura 6.28 Função de sobre tensão de parada.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
PB.06	Disparo do limite alto de corrente	50~200%	50~200	Modelo G: 160% Modelo P: 120%
PB.07	Taxa de redução de frequencia quando o limite de corrente é alcançado	0.00~100.00Hz/s	0.00~100.00	10.00Hz/s

Limite auto de corrente é usado para limitar a corrente do inversor menor que o valor determinado pelo PB.06 em tempo real. Sendo assim o inversor não sofrerá alteração devido ao surgimento de sobre corrente. Essa função é especialmente util para aplicações com grande carga de inércia ou com estágio de mudança de carga.

PB06 É um percentual da escala de corrente do inversor.

PB07 Define a escala de redução da ferqüência de saída quando a função é ativada. Se PB06 Pequeno, pode ocorrer falha de sobrecarga. Se é grande, a freqüência mudará precisamente e sendo assim, a realimentação de energia do motor será grande e causará falha de sobre tensão. Essa função é sempre habilitada durante a aceleração e desaceleração.

Observação:

- Durante o processo de limite auto de corrente, a frequencia de saida do inversor deve mudar; sendo assim é recomendado não habilitar essa função quando requer a saida de frequencia do inversor estabilizada.
- Durante o processo de limite auto de corrente, se PB06 é baixo, a capacidade de sobre carga será impactada.

Por favor consulte a seguinte figura.

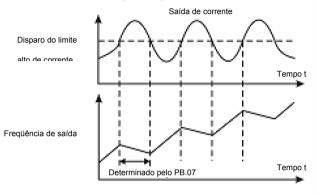


Figure 6.29 Função de proteção de limite de corrente .

Seção 5.06 6.13 Grupo PC-Comunicação serial

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
PC.00	Endereço local	1~247	0~247	1

Esse parâmetro determina o endereço do escravo usado para comunicação com o mestre. O valor "0" é o endereço de transmissão.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fabrica
PC.01	Seleção de Baud rate	0: 1200BPS 1: 2400BPS 2: 4800BPS 3: 9600BPS 4: 19200BPS 5: 38400BPS	0~5	3

Esse parâmetro pode ajustar a velocidade de transmissão do dado durante a comunicação serial.

Observação: O baud Rate do mestre deve ser o mesmo do escravo.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
PC.02	Formato do dado	0~17	0~17	0

Esse parâmetro define o formato do dado usado no protocolo de comunicação.

- 0: RTU, 1 start bit, 8 data bits, no parity check, 1 stop bit.
- 1: RTU, 1 start bit, 8 data bits, even parity check, 1 stop bit.
- 2: RTU, 1 start bit, 8 data bits, odd parity check, 1 stop bit.
- 3: RTU, 1 start bit, 8 data bits, no parity check, 2 stop bits.
- 4: RTU, 1 start bit, 8 data bits, even parity check, 2 stop bits.
- 5: RTU, 1 start bit, 8 data bits, odd parity check, 2 stop bits.
- 6: ASCII, 1 start bit, 7 data bits, no parity check, 1 stop bit.
- 7: ASCII, 1 start bit, 7 data bits, even parity check, 1 stop bit.
- 8: ASCII, 1 start bit, 7 data bits, odd parity check, 1 stop bit.
- 9: ASCII, 1 start bit, 7 data bits, no parity check, 2 stop bits.
- 10: ASCII, 1 start bit, 7 data bits, even parity check, 2 stop bits.
- 11: ASCII, 1 start bit, 7 data bits, odd parity check, 2 stop bits.
- 12: ASCII, 1 start bit, 8 data bits, no parity check, 1 stop bit.
- 13: ASCII, 1 start bit, 8 data bits, even parity check, 1 stop bit.
- 14: ASCII, 1 start bit, 8 data bits, odd parity check, 1 stop bit.
- 15: ASCII, 1 start bit, 8 data bits, no parity check, 2 stop bits.
- 16: ASCII, 1 start bit, 8 data bits, even parity check, 2 stop bits.
- 17: ASCII, 1 start bit, 8 data bits, odd parity check, 2 stop bits.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
PC.03	Tempo de Atraso na Comunicação	0~200ms	0~200	5ms

Esse parâmetro pode ser usado para ajustar o atraso na resposta na comunicação para adaptar para modbus master. Em modo RTU, o atraso na comunicação atual deve ser menor que 3.5 caracteres em modo ASCII, 1ms.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
PC.04	Tempo de Timeout da Comunicação	0.0: Desabilitado 0.1~100.0s	0~100.0	0.0s

Quando o valor é zero , essa função será desabilitada. Quando a interrupção na comunicação é maior que o valor 0 do PC.04, o inversor apresentará alarme de erro de comunicação(CE).

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
PC.05	Ação em Caso de Erro na Comunicação	0:Alarme e stop 1:Sem alarme e continua o funcionamento 2:Sem alarme mas para o inversor de acordo com P1.05(se P0.01=2) 3: sem alarme mas para de acordo com P1.05	0~3	1

- 0: Quando ocorre um erro de comunicação, o inversor apresentará alarme de comunicação e cessará o funcionamento.
- 1:Quando ocorrer um erro na comunicação , o inversor omitirá o erro e continuará o funcionamento.
- 2: Quando um erro de comunicação ocorrer , if P0.01=2, o inversor não vai alarmar mas cessará o funcionamento de acordo com o modo de parada determinado pelo P1.05.Caso contrário o erro será omitido.

 Quando ocorrer erro na comunicação , o inversor não vai alarmar mas cessará o funcionamento de acordo com o modo determinado pelo P1.05.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
PC.06	Ação de Resposta	Local da unidade do led 0:responde para escrever 1:não responde para escrever nos 10 locais dos led 0: não salva a referência quando desligado 1:salva a referência quando é desligado	0~1	0~1

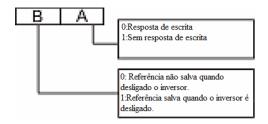


Figure 6.30 Significado do PC.06.

A stands for: Unit's place of LED. B stands for: Ten's place of LED

Seção 5.07 6.14 Grupo PD- Funções suplementares

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
PD.00	Baixa Freqüência de Limite de Restrição a Ocilação	0~500	0~500	5
PD.01	Alta Freqüência de Limite de Restrição a Ocilação	0~500	0~500	100

Essa função é válida somente quando o PD.04 é configurado em 0. Quanto menor o valor de PD.00 e PD.01, mais eficaz será o efeito de restricão a ocilação.

Observação: A maioria dos motores podem ter oscilação de corrente em um mesmo ponto de freqüência. Por favor, seja cuidadoso ao ajustar estes parâmetros para obter baixas oscilações.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
PD.02	Amplitude de Restrição a Ocilação	0~10000	0~10000	5000

Este pârametro é usado para limitar a amplitude de restrição a oscilação. Se o valor PD.02 for muito alto, pode causar sobre corrente no inversor. Deve ser configurado um pouco mais baixa para maior potência do motor, e vice-versa.

Descrição Detalhada das Funções

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
PD.03	Banda de restrição a Ocilação	0.0~P0.04	0.0HZ~P0.04	12.5HZ

Se a freqüência de saída for maior que PD.03, utiliza-se o valor PD.00, caso contrário utiliza-se o valorPD.01 .

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
PD.04	Restrição a Ocilação	0: Habilitar 1: Desabilitar	0~1	0

O motor sempre tem corrente de oscilação quando a carga é leve. Isso causará operação anormal mesmo sobre corrente. Para detalhes, por favor rever a descrição do PD.00 ~ PD.03.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
PD.05	Modo PWM	0: PWM modo 1 1: PWM modo 2 2: PWM modo 3	0~2	0

Para obter as características desses modos, por favor consulte a tabela abaixo:

	Ruído em	Ruído em	
Modo	Freqüência	Freqüência	Outros
	Baixo	Alta	
PWM modo 1	Baixo	Alto	
			Precisa ser derated, por causa
PWM modo 2	Bai	Baixo	do aumento de alta
			temperatura.
PWM modo 3	Al	to	Pode retrair a ocilação com
F WWW IIIOUO 3	AI	10	mais eficiência

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
PD.06	Fonte de Configuração do Torque	0:IHM 1:Al1 2:Al2 3: Al1+Al2 4:Configuração Mult- Speed 5: Comunicação	0~5	0
PD.07	Configuração de Torque pela IHM	-100.0%~100.0%	- 100.0%~100.0%	50.0%

- Controle de torque tem efeito:
- se Tset > Tload, a freqüência de saída aumentará continuamente até atingir limite alto de freqüência.
- se Tset<Tload, a freqüência de saída vai diminuir continuamente até atingir limite baixo de freqüência.
- O inversor pode funcionar em qualquer freqüência entre entre limite alto e baixo de freqüência somente quando Tset = Tload.
- Controle de torque pode ser alterado para controle de velocidade e vice-versa.
- Alterando pelo terminal multifuncional: Por exemplo, se o controle de torque é
 habilitado (P0.00) a fonte de configuração de torque é Al1, o valor do terminal
 multifuncional S5 é configurado para 20 (Controle de torque desabilitado). Quando
 S5 é válido, o modo de controle será alterado de controle de torque para controle
 de velocidade e vice versa.
- Quando está em funcionamento pelo modo de controle de torque, pressione STOP/RST, mudará para controle de velocidade automaticamente.
- Se a configuração de torque é + , o inversor funcionará em sentido horário caso contrário ele funcionará em sentido anti-horário.

Observação:

Quando em funcionamento pelo modo de controle de torque, o tempo de aceleração não há ligação com P8.08.

100% da configuração de torque é correspondente a 100% do P3.07 (limite de torque). Por exemplo, se a fonte de configuração de torque é IHM (PD.06 = 0, PD.07 = 80 % e P3.07 = 90%).

Configuração atual de torque = 80% (PD.07)*90% (P3.07 = 72%).

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
PD.08	Seleção de Limite Alto de Freqüência	0: IHM 1: Al1 2: Al2 3:Configuração Multi-Speed 4: Communicação	0~4	0

100% desse parametro é correspondente a 100% de P0.04 (freqüência máxima).

Quando está funcionando em modo de controle de torque, a freqüência de saída pode ser ajustada se mudar o limite alto de freqüência.

Código da Função	Nome	Descrição	Configuração de Range	Configuração de Torque
PD.09	Seleção Automática de Limite de Corrente	0: Habilitado 1: Desabilitado quando a Velocidade Constante	0~1	0

Função automática de limite de corrente é usada para previnir que o inversor mude de sobre corrente para um aumento repentino de corrente. É usado especialmente em aplicações de grandes cargas de inércia. Essa função é sempre habilitada durante a aceleração ou período de desaceleração.

Observação: Durante o processo de auto limite de corrente, a freqüência de saída do inversor pode mudar; sendo assim, é recomendado desabilitar a função quando a freqüência de saída necessita ser estabilizada.

Seção 5.08 6.15 Grupo PE—Configuração de Fábrica

Esses parâmetros pertencem ao grupo de parametros configurados de fábrica. O usuário não pode abrir este grupo de parâmetros.caso contrário causará anormalidade na operação do inversor ou dano.

Artigo VI.

Artigo VII.

Artigo VIII.

Artigo IX.

Artigo X.

Artigo XI.7. GUIA DE FALHAS

Seção 11.01

Seção 11.02 7.1 Falhas e Soluções

Código de falha	Tipo de falhas	Causa	Solução
OUT1	Falha IGBT Ph-U	Tempo Acc/Dec é muito curto.	Aumente o tempo Acc/Dec
OUT2	Falha IGBT Ph-V	2. Falha no módulo IGBT.	2. Solicite ajuda ao
OUT3	Falha IGBT Ph-W	3. Mau funcionamento causado por interferência. 4. Aterramento não é apropriado.	suporte técnico. 3. Inspecione o equipamento externo e elimine interferência.
OC1	Sobre-corrente durante aceleração	Curto circuito ou falha no terra ocorrido na saída do inversor.	Verfique se há danos no motor, isolação do condutor,
OC2	Sobre-corrente durante desaceleração	A carga é muito pesada	ou cabo danificado. 2. Aumente o tempo
	Sobre corrente durante	ou o tempo Acc/Dec é muito curto. 3. A curva V/F não é	Acc/Dec ou selecione uma capacidade maior para o inversor.
OC3	funcionamento com velocidade constante	apropriada. 4.Mudança rependina da carga.	3. Cheque e ajuste a curva V/F.
OV1	Sobre-tensão durante aceleração	O tempo Dec é muito curto e a energia regenerativa do motor é muito grande.	Aumente o tempo Dec ou conecte o resistor de frenagem.
OV2	Sobre-tensão durante desaceleração	2. Tensão de entrada é	Diminua a tensão de entrada de acordo com as especificações.

OV3	Sobre tensão quando funcionamento com velocidade constante		
UV	Sub tensão no barramento DC	1. Falta de fase na alimentação. 2. Perda momentanea da alimentação 3. Ligação dos terminais de entrada da alimentação estão soltos. 4.Flutuações de tensão de alimetação são grandes.	Inspecione a entrada de alimentação ou faça a ligação.
OL1	Sobre carga no motor	1. Carga pesada no motor em velocidade baixa por um longo tempo. 2. Curva imprópria 3. Disparo da proteção de sobre carga (PB.01) 4. Mudança repentina de carga.	1. Selecione a variável de frequência no motor 2. Cheque e ajuste a curva V/F. 3. Cheque e ajuste PB.01 4. Cheque e carregue.
OL2	Sobre carga no inversor	1. Carga é muito pesada ou o tempo Acc/Dec é muito curto. 2. Curva V/F imprópria 3. A capacidade do inversor é muito pequena.	1. Aumente o tempo Acc/Dec ou selecione um inversor de capacidade maior. 2. Cheque e ajuste a curva V/F. 3. Selecione inversor de capacidade maior.

SPI	Falha na fase de entrada	Falta de fase na alimentação Perda momentanea da alimentação Ligação dos terminais de entrada da alimentação estão soltos.	Cheque a fiação, instalação e alimentação.
		4.Flutuações de tensão de alimetação são grandes. 5. Balanceamento entre as fases não é bom	
		Há um fio quebrado no cabo de saída	
SPO	Falha na fase de saída	Há um fio quebrado no motor de ventilação.	Cheque a fiação e a instalação.
		Terminais de saída estão soltos.	
EF	Falha externa	Ex: Falha externa detectada no terminal de entrada.	Inspecione o equipamento externo.
	Sobre	1.Temperatura ambente é muito alta.	Instale unidade de refrigeração.
OH1	aquecimento no retificador	2. Fonte de calor próxima.	2. Remova fonte de calor.
		Cooler do inversor parado ou danificado.	Substitua o ventilador
OH2	Sobre aquecimento no IGBT	4. Obstrução do canal de ventilação 5. Frequência portadora é	Limpe o canal de ventilação.
		muito alta.	5. Diminua a frequência portadora.

CE	Falha de comunicação	Configuração de baud rate imprópria. Recebimento de informação errada. Comunicação é interrompida por muito tempo.	Configure um baud rate apropriado. Cheque a comunicação dos dispositivos e sinais.
ITE	Falha na detecção de corrente	Fios ou conectores da placa de controle estão soltos. O sensor Hall está danificado. Circuito amplificador está anormal.	Cheque a ligação. Solicite suporte técnico.
TE	Falha no auto ajuste	Configuração imprópria dos parâmetros do motor. Tempo de auto ajuste	Configure os valores dos parâmetros de acordo com a placa de identificação do motor.
		excedido.	Cheque a fiação do motor.
EEP	Falha na EEPROM	Falha no controle dos parâmetros R/W	Pressione TOP/RESET para resetar. Solicite suporte técnico
PIDE	Falha na realimentação da	Realimentação do PID desconectada.	Inspecione a ligação da realimentação da PID.
	PID	Fonte da realimentação do PID desaparece.	Inspecione a fonte de realimentação da PID.
BCE	Falha na unidade de frenagem	Falha no circuito de frenagem ou dano no tubo de frenagem.	Inspecione a unidade de franagem, substitua o tubo de frenagem.
		Baixa resistência da conexão externa do resistor de frenagem.	Aumente a resistência de frenagem.
	Reserva de fábrica		

Seção 11.03 7.2 Soluções e Falhas Comuns

O inversor pode ter as seguintes falhas ou mau funcionamento durante a operação, por favor consulte as seguintes soluções:

7.2.1 Display não liga quando inversor é alimentado:

- Inspecione se a tensão de alimentação é a mesma da tensão característica do inversor ou verifique se existe alimentação com multímetro.
- Inspecione se a ponte refiticadora trifásica está em boas condições ou não. Se a ponte ratificadora está danificada consulte o suporte técnico.
- Cheque a luz de carga. Se a luz estiver desligada a falha é principalmente na ponte retificadora ou no resistor de armazenamento. Se a luz estiver acesa, a falha pode ser no chaveamento da alimentação. Por favor solicite suporte técnico.

7.2.2 Fonte de alimentação de ar é desligada imediatamente após seu ligamento:

- Inspecione se a alimentação de entrada está aterrada ou em curto circuito.
- Inspecione se a ponde retificadora está queimada ou não. Se estiver danificada, solicite suporte.

7.2.3 O motor não se move com o inversor em funcionamento:

- Inspecione se existe saída trifásica balanceada entre U, V, W. Se existir, o motor pode estar danificado, ou mecanicamente travado.
- Se a saída não está balanceada ou está perdida, a placa de potência do inversor ou módulo de saída podem estar danificados, solicite suporte técnico.

7.2.4 O display do inversor trabalha normalmente quando ligado mas muda entrada quando está em funcionamento.

- Inspecione se a saída do inversor está em curto circuito. Se estiver, por favor solicite suporte técnico.
- Inspecione se existem falhas de aterramento.
- Se existir um escorreagamento, e a distância entre o motor e o inversor for muito grande, é recomendado instalar um reator de saída AC.

Artigo XII. 8. MANUTENÇÃO

Λ

ADVERTÊNCIA

- Manutenção deve ser executada de acordo com os métodos designados de manutenção.
- Manutenção, inspeção e substituição de peças deve ser feito somente por pessoa autorisada.
- Depois desligue o circuito central de alimentação, espere por 10 minutos antes de executar manutenção ou inspecionar.
- NÃO toque diretamente nos components ou dispositivos da placa PCB.
 Caso contrário, o inversor pode ser danificado pela eletroestática.
- •Depois da manutenção todos os parafusos deveram ser apertados.

Seção 12.01 8.1 Manutenção Diária

Para prevenir falhas no inversor e fazê-lo operar suavemente em alta-performance por um longo tempo, o usuário deve inspecionar o inversor periodicamente (semestralmente) A tabela a seguir indica o conteúdo da inspensão.

Itens para	Inspeçã	ăo principal	Critério
serem checados	Conteúdo da inspeção	Freqüência	Meios/Métodos
Ambiente de operação	1.Temperatura 2. Humidade 3. Poeira 4. Vapor 5. Gases	1. Ponto do termômetro - higrômetro 2. Observação 3. Checagem visual e por cheiro	1. Temperatura ambiente deve ser menor que 40 graus, caso contrário os valores ajustados deveram ser diminuidos. A umidade deve estar de acordo com o que foi pedido. 2. Sem acúmulo de pó, sem traços de vazamento de águas e sem condensados. 3. Sem cor ou cheiro anormal.

Inverter	Vibração Resfriamento e aquecimento Ruído	Ponto do termômetro Observação compreensiva Verificação auditiva	1.Operação suave sem vibração 2. Ventilador está trabalhando em boas condições. Velocidade e fluxo de ar normal. Sem aquecimento anormal. Sem ruído anormal
Motor	Vibração Calor Ruído	Observação Ponto de termômico Verificação auditiva	Sem vibração anormal e sem ruído anormal. Causar aquecimento anomal. Sem causa de aquecimento anormal. Sem ruído anormal.
Status dos parâ - metros de operação	1. Tensão de alimentação 2. Tensão de saída do inversor 3. Corrente de saída do inversor 4. Temperatura interna	1. Voltímetro 2. Voltímetro retificador 3. Amperímetro 4. Ponto de termômetro	Satisfazendo especificação Satisfazendo especificação Satisfazendo especificação Aumento de temperatura é menor que 40 graus

Seção 12.02 8.2 Manutenção Periódica

Usuário deve checar o driver a cada 3 ou 6 meses de acordo com o ambiente atual.

- 8.2.1 Cheque se os parafusos dos terminais de controle estão frochos. Se estiverem, apeete-os com um chave de fenda.
- 8.2.2 Cheque se os terminais do circuito principal estão conectados corretamente, e se os cabos estão super aquecidos.
- 8.2.3 Cheque se os cabos de alimentação e cabos de controle estão danificados, cheque especialmente a isolação do cabo e a tubilação.
- 8.2.4 Cheque se as fitas de isolamento em volta dos plugs estão danificadas.
- 8.2.5 Limpe a poeira dos PCBs e duto de ar com um aspirador de pó.
- 8.2.6 No caso de equipamentos que foram armazenados por muito tempo, eles deve ser ativados a cada dois anos. Quando usar fonte de tensão AC

para alimentar o equipamento, use um regulador de tensão para aumentar a tensão de entrada para escala de tensão de entrada gradualmente. O equipamento deve ser ligado por 5 horas sem carga.

- 8.2.7 Antes de teste de desempenho de isolação todos os terminais de entrada e saída do circuito principal deve ser curto circuitado com os condutores. Então prosiga o teste de isolação para o terra. O teste de isolação de um único terminal para o terra é proíbido, caso contrário o aparelho poderá ser danificado. Por favor, use um megometro de 500 V.
- 8.2.8 Antes do teste de isolação do motor, desconecte o motor do equipamento para impeder danos.

Seção 12.03 8.3 Substituição de Peças de Reposição:

Cooler e capacitores eletrolíticos são peças de reposição, por favor faça a substituição periódica para certificar-se de uma operação segura, livre de falhas e por um longo prazo. Os períodos de substituição são os seguintes:

- Cooler: Deve ser substituido quando usado por mais de 20000 horas.
- Capacitores eletrolíticos: Devem ser substituidos por mais de 30000 ~40000 horas.

Seção 12.04

Seção 12.05 8.4 Garantia

A garantia de fábrica desse produto é de 12 meses a partir da data da compra.

Artigo XIII. 9. LISTA DAS FUNÇÕES DOS PARÂMETROS

Nota:

- Grupo PE são pré-definidos pelo fabricante, usuários estão proibidos de acessar esses parâmetros
- A coluna "Modificar" determina os parâmetros que podem ser modificados ou não.
 - "o" indica qual desses parâmetros podem ser modificados o tempo todo "o"indica qual desses parâmetros não podem ser modificados durante o funcionamento do inversor.
 - "●"indica qual desses parâmetros são somente para leitura.
- "Parâmetros de fábrica" indica o valor de cada parâmetro quando os parâmetros de fábrica são restaurados, mas esses parâmetros detectados ou valores gravados não podem ser restaurados.

Código da Função	Nome	Descrição	Configu- ração de Fábrica	Modifi- car	No. De Série
Grupo P0:	Funções Básicas				
P0.00	Seleção do modo de controle	0: controle vetorial sensorless 1:controle V/F 2:controle de torque	0	©	0
P0.01	Fonte de comandos para funcionamento	0:IHM(LED desligado) 1: Terminal (LED piscando) 2:Comunicação(LED acesso)	0	0	1
P0.02	Configuração teclas UP/DOWN	0:Válido, salva o valor UP/DOWN quando o inversor é desligado. 1: Válido, não salva o valor UP/DOWN quando o inversor é desligado. 2:Inválido 3: Válido durante o funcionamento, perde os valores quando o inversor para	0	0	2

Código da Função	Nome	Descrição	Configu- ração de Fábrica	Modifi- car	No. De Série
P0.03	Comando da freqüência A	0: IHM 1: Al1 2. Al2 3: Al1+Al2 4. Multi-speed 5: PID 6: Comunicação	0	0	3
P0.04	Freqüência máxima	10.00~600.00Hz	50.00Hz	0	4
P0.05	Limite alto de freqüência	P0.06~ P0.04	50.00Hz	0	5
P0.06	Limite baixo de freqüência	0.00 Hz ~ P0.05	0.00Hz	0	6
P0.07	Referência de freqüência da IHM	0.00 Hz ~ P0.04	50.00Hz	0	7
P0.08	Tempo de aceleração 0	0.0~3600.0s	Depende do modelo	0	8
P0.09	Tempo de desaceleração 0	0.0~3600.0s	Depende do modelo	0	9
P0.10	Seleção da direção de funcionamento	0: Horário 1: Anti-horário 2: Proibido reverter	0	©	10
P0.11	Freqüência portadora	1.0~15.0kHz	Depende do modelo	0	11
P0.12	Parâmetros de auto-ajuste do motor	0: Sem ação. 1:Auto-ajuste com motor em funcionamento. 2:Auto-ajuste com motor parado.	0	©	12
P0.13	Restaurar Parâmetros	0: Sem ação. 1: Restaurar com as configurações de fabrica. 2: Deletar as falhas armazenas na memória.	0	0	13

Código da Função	Nome	Descrição	Configu- ração de Fábrica	Modifi- car	No. De Série
P0.14	Função AVR	0:Desabilitado. 1:Habilitado o tempo todo. 2:Desabilita durante a desaceleração.	2	0	14
Grupo P1:	Controle de Partida e	Parada			
P1.00	Modo de Partida	0: Partida direta 1: Frenagem DC e partida	0	0	15
P1.01	Freq üência de Partida	0.00~10.00Hz	1.5Hz	0	16
P1.02	Tempo de Permanência da Freq üência de Partida	0.0~50.0s	0.0s	0	17
P1.03	Corrente de Frenagem DC antes da Partida	0.0~150.0%	0.0%	0	18
P1.04	Tempo de Frenagem DC antes da Partida	0.0~50.0s	0.0s	0	19
P1.05	Modo de Parada	0: Tempo de desaceleração 1: Parada por inércia	0	0	20
P1.06	Freq üência para Partida do Freio DC	0.00~P0.04	0.00Hz	0	21
P1.07	Tempo de Espera antes da Parada DC	0.0~50.0s	0.0s	0	22
P1.08	Corrente de Frenagem DC	0.0~150.0%	0.0%	0	23
P1.09	Tempo de Frenagem DC	0.0~50.0s	0.0s	0	24
P1.10	Tempo de Zona Morta entre a Reversão do Motor	0.0~3600.0s	0.0s	0	25
P1.11	Habilitar a Reversão quando o Inversor está em Funcionamento	0:Desabilitado 1:Habilitado	0~1	0	26

Código da Função	Nome	Descrição	Configu- ração de Fábrica	Modifi- car	No. De Série
P1.12	Reservado		0	0	27

Grupo P2	: Parâmetros do Moto	•			
P2.00	Opção G/P	0: G Model 1: P Model	Depende do modelo	0	28
P2.01	Potência do Motor	0.4~900.0kW	Depende do modelo	0	29
P2.02	Freq üência do Motor	0.01Hz~P0.04	50.00Hz	0	30
P2.03	RPM do Motor	0~36000rpm	Depende do modelo	0	31
P2.04	Tensão do Motor	0~2000V	Depende do modelo	0	32
P2.05	Corrente do Motor	0.8~2000.0A	Depende do modelo	0	33
P2.06	Resistência do Estator do Motor	0.001~65.535Ω	Depende do modelo	0	34
P2.07	Resistência do Rotor do Motor	0.001~65.535Ω	Depende do modelo	0	35
P2.08	Indutância de Fulga do Motor	0.1~6553.5mH	Depende do modelo	0	36
P2.09	Indutância Mutua do Motor	0.1~6553.5mH	Depende do modelo	0	37
P2.10	Corrente do Motor sem Carga	0.01~655.35A	Depende do modelo	0	38

Grupo P3: Controle Vetorial								
P3.00	Ganho Proporcional KP1 ASR	0~100	20	0	39			
P3.01	Tempo Integral KI1 ASR	0.01~10.00s	0.50s	0	40			
P3.02	Chaveamento no Ponto1 ASR	0.00Hz~P3.05	5.00Hz	0	41			
P3.03	Ganho Proporcional KP2 ASR	0~100	15	0	42			
P3.04	Tempo Integral KI2 ASR	0.01~10.00s	1.00s	0	43			
P3.05	Chaveamento no Ponto2 ASR	P3.02~P0.04	10.00Hz	0	44			
P3.06	Compensação de Escorregamento	50.0~200.0%	100%	0	45			
P3.07	Limite de Torque	0.0~200.0%	150.0%	0	46			

GrupoP4: Controle V/F								
P4.00	Seleção da Curva V/F	0:Curva linear 1:Curva de torque (curva de ordem 2)	0	0	47			
P4.01	Otimização do Torque	0.0%: (auto) 0.1□~10.0□	0.0%	0	48			
P4.02	Interrupção da Otimização do Torque	0.0%~50.0% (Freqüência do motor)	20.0%	0	49			
P4.03	Limite de Compensação de Escorregamento V/F	0.00~200.0%	0.0%	0	50			
P4.04	Seleção do modo Econômico de Energia Automático	0:Desabilita 1:Habilitado	0	0	51			
P4.05	Reservado			•	52			

P5 Grupo	: Terminais de Entrada	a			
P5.00	Função do Terminal S1	0: Inválido 1: Sentido Horáio 2: Sentido Anti-Horário 3: Controle a 3 fios	1	•	53
P5.01	Função do Terminal S2	4: JOG Horário 5: JOG Anti-Horáio 6: Parada por Inércia 7: Reset de Falhas 8: Entrada de Faha Externa 9: Comando UP (MOP)	4	©	54
P5.02	Função do Terminal S3	10: Comando DOWN (MOP) 11: Limpa UP/DOWN: 12: Mult-speed Referência1 13: Mult-speed Referência 2 14: Mult-speed Referência3 15: Seleção Tempo ACC/DEC 16:Pausa PID 17:Pausa da Operação Transversal 18: Reset da Operação Transversal 19: Rampa de ACC/DEC 20: Desabilita o Controle do Torque	7	•	55
P5.03	Função do Terminal S4	21: UP/DOWN invalido Temporariamente 22-25: Reservado	0	©	56
P5.04	Liga/desliga Tempo dos Filtros	1~10	5	0	57
P5.05	Modo de Controle do Sentido de Rotação	0: Modo1 de controle a 2 fios 1: Modo2 de controle a 2 fios 2: Modo1 de controle3 3: Modo3 de controle3	0	•	58
P5.06	Mudança da Taxa de Configuração UP/DOWN	0.01~50.00Hz/s	0.50 Hz/s	0	59
P5.07	Limite Baixo da Al1	0.00V~10.00V	0.00V	0	60
P5.08	Limite Baixo da Al1 Correspondente a Configuração	-100.0%~100.0%	0.0%	0	61
P5.09	Limite Alto da A1	0.00V~10.00V	10.00V	0	62

P5.10	Limite aAto da Al1 Correspondente a Configuração	-100.0%~100.0%	100.0%	0	63
P5.11	Tempo do Filtro Constante da Al1	0.00s~10.00s	0.10s	0	64
P5.12	Limite Baixo da Al2	0.00V~10.00V	0.00V	0	65
P5.13	Limite Baixo da Al2 Correspondente a Configuração	-100.0%~100.0%	0.0%	0	66
P5.14	Limite Alto da A2	0.00V~10.00V	10.00V	Ο	67
P5.15	Limite Alto da Al2 Correspondente a Configuração	-100.0%~100.0%	100.0%	0	68
P5.16	Tempo do Filtro Constante da Al2	0.00s~10.00s	0.10s	0	69
P6 Grupo:	: Terminais de Saída				
P6.00	Seleção da Saída Y	0: Sem Saída 1: Motor Girando no Sentido Horário 2: Motor Girando Sentido Anti-Horário 3: Saída de Falha 4: FDT Alcançado	1	0	70
P6.01	Seleção do Relé de Saída	5: Freqüência Alcançada 6: Funcionamento em Velocidade Anula 7: Limite Alto de Freqüência Alcançado 8: Limite Baixo de Freqüência Alcançado 9~10: Reservado	3	0	71
P6.02	Seleção da AO	0:Freqüência atual 1: Freqüência de Referência 2: Velocidade do Motor 3: Saída de Corrente 4: Tensão de Saída 5: Potência de Saída 6: Saída de Torque 7:Al1 Tensão 8: Al2 Tensão/ Corrente 9~10: Reservado	0	0	72
P6.03	Limite Baixo da AO	0.0%~100.0%	0.0%	0	73
P6.04	Limite Baixo AO Correspondente a Saída	0.00V ~10.00%	0.00V	0	74

Lista das Funções dos Parâmetros

P6.05	Limite Alto da AO	0.0%~100.0%	100.0%	0	75
P6.06	Limite Alto AO Correspondente a Saída	0.00V ~10.00V	10.00V	0	76
Grupo P7	: ІНМ				
P7.00	Password	0~65535	0	0	77
P7.01	Seleção da Língua	0:Chinês 1: Inglês	0	0	78
P7.02	Copiar os Parâmetros	0:Inválido 1: Upload do Inversor 2: Download para o Inversor	0	0	79
P7.03	Seleção da Função QUICK/JOG	0:JOG 1: Sentido de Rotação 2: Limpa a Configuração UP/Down	0	•	80
P7.04	Função da Opção STOP/RST	O: Válido quando o Parâmetro P0.01=0 1: Válido quando o Parâmetro P0.01=0 ou a entrada de controle for igual a 1. 2: Válido quando o parâmetro P0.01=0 ou o controle de comunicação for igual a 2. 4=Sempre válido	0	0	81
P7.05	Seleção IHM	0: Preferencialmente a IHM Externa 1: Funciona as 2 IHM's, Porém Somente a IHM Externa é Válida. 2:Funciona as 2 IHM's, Porém Somente a IHM Local é Valida 3:Funciona as e as 2 IHM's são Válidas.	0	0	82
P7.06	Seleção do Estado do Display com o Inversor em Trabalho	0~0X7FFF BITO: Frequência de Saída BIT1: Referência de Frequência BIT2: Tensão do Barramento DC BIT3: Tensão de Saída BIT4: Corrente de Saída BIT5: Velocidade de Rotação BIT6: Potência de Saída BIT7: Torque de Saída BIT7: Torque de Saída BIT8: Preset PID BIT9: Realimentação PID BIT10: Estado do Terminal de Entrada BIT11: Estado do Terminal de Saída BIT12: Al1 BIT13: Al2 BIT14: N° do Passo da Função Mult-Speed BIT15: Reservado	0XFF	0	83

1		T			
P7.07	Seleção do Parâmetro Mostrado no Display com o Inversor em Stop	0~0X1FF BIT0: Referência de Frequência BIT1: Tensão do Barramento DC BIT2: Estado do Terminal de Entrada BIT3: Estado do Terminal de Saída BIT4: Presset PID BIT5: Realimentação PID BIT6: Al1 BIT7: Al2 BIT8: N° do Passo da Função Mult-Speed BIT9~15: Reserved	0xFF	0	84
P7.08	Temperatura do Modulo Retificador	0~100.0□		•	85
P7.09	Temperatura do Modulo IGBT	0~100.0□		•	86
P7.10	Versão do Software			•	87
P7.11	Tempo Acumulado de Funcionamento	0~65535h		•	88
P7.12	3º Ultima Falha	0: Em Falhas 1: Falha IGBT Fase-U (OUT1) 2: Falha IGBT Fase-V(OUT2) 3: Falha IGBT Fase-W(OUT3) 4: Sobre Corrente Durante a Aceleração(OC1) 5: Sobre Corrente Durante a Desaceleração(OC2) 6: Sobre Corrente Durante Regime Constante de Velocidade (OC3)		•	89
P7.13	Penúltima Falha	7: Sobre Tensão Durante a Aceleração(OV1) 8: Sobre Tensão Durante a Desaceleração(OV2) 9: Sobre Tensão Durante Regime Constante de Velocidade (OV3) 10: Sub-Tensão no Barramento DC(UV) 11: Sobrecarga no Motor (OL1) 12: Sobrecarga no Inversor (OL2) 13: Falta de Fase na Entrada (SPI) 14: Falta de Fase na Saída(SPO) 15: Sobre Aquecimento no Retificador (OH1) 16: Sobre Aquecimento no IGBT (OH2) 17: Falha Externa (EF) 18: Falha na Comunicação (CE) 19: Detecção de Falha de Corrente(ITE)		•	90

P7.14	Falha Corrente	20: Falha de Auto-Ajuste (TE) 21: Falha na EEPROM (EEP) 22: Falha na Realimentação do PID (PIDE) 23: Falha na Unidade de Frenagem (BCE) 24: Reservado		•	91
P7.15	Freqüência de Saída no Momento da Falha	Frequencia de Saida no Momento da Falha.		•	92
P7.16	Corrente de Saída no Momento da Falha	Corrente de Saida no Momento da Falha.		•	93
P7.17	Voltagem do Barramento DC no Momento da falha	Voltagem do Barramento DC no Momento da Falha.		•	94
P7.18	Estado dos Terminais de Entrada no Momento da Falha	BIT3 BIT2 BIT1 BIT0 S4 S3 S2 S1		•	95
P7.19	Estado dos Terminais de Saída no Momento da Falha	BIT3 BIT2 BIT1 BIT0 R0 Y		•	96
Grupo P8	3: Funções de Aperfei	çoamento			
P8.00	Tempo de Aceleração1	0.1~3600.0s	Depende do modelo	0	97
P8.01	Tempo de Desaceleração1	0.1~3600.0s	Depende do modelo	0	98
P8.02	Referência de JOG	0.00~P0.04	5.00Hz	0	99
P8.03	Tempo de Aceleração JOG	0.1~3600.0s	Depende do modelo	0	100
P8.04	Tempo de Desaceleração JOG	0.1~3600.0s	Depende do modelo	0	101
P8.05	Freqüência de Salto	0.00~P0.04	0.00Hz	0	102

P8.06	Largura da Banda de Freqüência de Salto	0.00~P0.04	0.00Hz	0	103
P8.07	Amplitude Transversal	0.0~100.0%	0.0%	0	104
P8.08	Ocilação da Freqüência	0.0~50.0%	0.0%	0	105
P8.09	Aumento do tempo de passagem	0.1~3600.0s	5.0s	0	106
P8.10	Queda do tempo de passagem	0.1~3600.0s	5.0s	0	107
P8.11	Tempo para Auto Reset	0~3	0	0	108
P8.12	Intervalo entre Reset	0.1~100.0s	1.0s	0	109
P8.13	Nivel FDT	0.00~ P0.04	50.00Hz	0	110
P8.14	Atraso FDT	0.0~100.0%	5.0%	0	111
P8.15	Range de detecção de freqüência	0.0~100.0%⊡Maxima Frequencia⊡	0.0%	0	112
P8.16	Tensão de Disparo de Frenagem	115.0~140.0%	Depende do modelo	0	113
P8.17	Coeficiente de Velocidade de Rotação	0.1~999.9%	100.0%	0	114
Grupo P9:	Controle PID				
P9.00	Seleção do Presset do PID	0: Keypad 1: Al1 2: Al2 3: Comunicação 4: Multi-Speed	0	0	115
P9.01	Presset do PID pela IHM	0.0%~100.0%	0.0%	0	116

P9.02	Seleção de Realimentação do PID	0: Al1 1: Al2 2: Al1+Al2 3: Comunicação	0	0	117
P9.03	Características da Saída do PID	0: Positive 1: Negative	0	0	118
P9.04	Ganho Proporcional (Kp)	0.00~100.00	1.00	0	119
P9.05	Tempo Integral (Ti)	0.01~10.00s	0.10s	0	120
P9.06	Tempo Diferencial (Td)	0.00~10.00s	0.00s	0	121
P9.07	Tempo de Amostragem (T)	0.01~100.00s	0.10s	0	122
P9.08	Limite de bias	0.0~100.0%	0.0%	0	123
P9.09	Valor de Detecção de Perda da Realimentação	0.0~100.0%	0.0%	0	124
P9.10	Tempo de Detecção de Perda da Realimentação	0.0~3600.0s	1.0s	0	125
Grupo PA	: Controle Multi-Speed	d			
PA.00	Multi-Speed 0	-100.0~100.0%	0.0%	0	126
PA.01	Multi-Speed 1	-100.0~100.0%	0.0%	0	127
PA.02	Multi-Speed 2	-100.0~100.0%	0.0%	0	128
PA.03	Multi-Speed 3	-100.0~100.0%	0.0%	0	129
PA.04	Multi-Speed 4	-100.0~100.0%	0.0%	0	130
PA.05	Multi-Speed 5	-100.0~100.0%	0.0%	0	131
PA.06	Multi-Speed 6	-100.0~100.0%	0.0%	0	132
PA.07	Multi-Speed 7	-100.0~100.0%	0.0%	0	133
Grupo PE	3: Funções de Proteçã	0			
PB.00	Proteção de Sobrecarga do Motor	0: Desabilitado 1: Normal motor 2: Variar a frequencia do motor.	2	0	134
PB.01	Proteção de Sobrecarga de Corrente no Motor	20.0%~120.0%	100.0%	0	135

PB.02	Disparo para Funcionamento do Motor por Inércia	70.0~110.0%	80.0%	0	136
PB.03	Taxa de Redução para Funcionamento do Motor por Inércia	0.00Hz~P0.04	0.00Hz	0	137
PB.04	Proteção Contra sobre Carga de Parada	0: Desabilitado 1: Habilitado	0	0	138
PB.05	Ponto de proteção contra sobre carga na Parada	110~150%	Depende do modelo	0	139
PB.06	Disparo do Limite Alto de Corrente	50~200%	G:160% P:120%	0	140
PB.07	Taxa de Redução de Freqüência Quando o Limite de Corrente é Alcançado	0.00~100.00Hz/s	10.00 Hz/s	0	141
Grupo PC	: Comunicação Serial				
PC.00	Endereço Local	0~247	1	0	142
PC.01	Seleção Baud Rate	0: 1200BPS 1: 2400BPS 2: 4800BPS 3: 9600BPS 4: 19200BPS 5: 38400BPS	3	0	143
PC.02	Formato do Dado	0: RTU, 1 start bit, 8 data bits, no parity check, 1 stop bit. 1: RTU, 1 start bit, 8 data bits, even parity check, 1 stop bit. 2: RTU, 1 start bit, 8 data bits, odd parity check, 1 stop bit. 3: RTU, 1 start bit, 8 data bits, no parity check, 2 stop bits. 4: RTU, 1 start bit, 8 data bits, even parity check, 2 stop bits. 4: RTU, 1 start bit, 8 data bits, even parity check, 2 stop bits. 5: RTU, 1 start bit, 8 data bits, odd parity check, 2 stop bits. 6: ASCII, 1 start bit, 7 data bits, no parity check, 1 stop bit. 7: ASCII, 1 start bit, 7 data bits, even parity check, 1 stop bit. 8: ASCII, 1 start bit, 7 data bits, no parity check, 1 stop bit. 9: ASCII, 1 start bit, 7 data bits, no parity check, 2 stop bits. 10: ASCII, 1 start bit, 7 data bits, no parity check, 2 stop bits.	0	0	144

		11: ASCII, 1 start bit, 7 data bits, odd parity check, 2 stop bits. 12: ASCII, 1 start bit, 8 data bits, no parity check, 1 stop bit. 13: ASCII, 1 start bit, 8 data bits, even parity check, 1 stop bit. 14: ASCII, 1 start bit, 8 data bits, odd parity check, 1 stop bit. 15: ASCII, 1 start bit, 8 data bits, no parity check, 2 stop bits. 16: ASCII, 1 start bit, 8 data bits, even parity check, 2 stop bits. 17: ASCII, 1 start bit, 8 data bits, even parity check, 2 stop bits.			
PC.03	Tempo de Atraso na Comunicação	0~200ms	5	0	145
PC.04	Tempo de Timeout da Comunicação	0.0: Desabilitado 0.1~100.0s	0.0s	0	146
PC.05	Ação em Caso de Erro na Comunicação	0:Alarme e Stop 1:Sem Alarme e Continua o Funcionamento 2:Sem Alarme mas para o Inversor de Acordo com P1.05(se P0.01=2) 3: Sem alarme, mas para de Acordo com P1.05	1	0	147
PC.06	Ação de Resposta	Local da Unidade do Led 0:Responde para Escrever 1:Não Responde para Escrever nos 10 Locais dos Led 0: Não Salva a Referencia Quando Desligado 1:Salva a Referencia Quando é Desligado	0	0	148
Grupo PD:	: Funções Suplementar	es			
PD.00	Baixa Freqüência de Limite de Restrição a Oscilação	0~500	5	0	149
PD.01	Alta Freqüência de Limite de Restrição a Oscilação	0~500	100	0	150
PD.02	Amplitude de Restrição a Oscilação	0~10000	5000	0	151
PD.03	Banda de Restrição a Ocilação	0.0~P0.04	12.5Hz	0	152

PD.04	Restrição a Oscilação	0:Habilitado 1:Desabilitado	0	0	153
PD.05	Modo PWM	0:PWM Modo 1 1:PWM Modo 2 3: PWM Modo 3	0	©	154
PD.06	Fonte de Configuração do Torque	0:IHM 1:Al1 2:Al2 3: Al1+Al2 4: Configuração Mult-Speed 5: Comunicação	0	0	155
PD.07	Configuração de Torque pela IHM	-100.0%~100.0%	0	0	156
PD.08	Seleção de Limite Alto de Freqüência	0:IHM(P0.05) 1:Al1 2:Al2 3: Al1+Al2 4:Configuração Mult-Speed 5: Comunicação	0	0	157
PD.09	Seleção Automática de Limite de Corrente	0:Habilitado 1:Desabilitado	0	0	158
Grupo PE	Grupo PE: Configuração de Fabrica				
PE.00	Password de fábrica	0~65535	****	•	159

Seção 13.01 9.1 Parâmetros Especias para Série de Inversores de Alta Velocidade CHE150

Código da Função	Nome	Descrição	Configuraç ão de Fabrica	Modific ar
Grupo P0:	Funções Básicas			
P0.04	Freqüência Máxima	10.00~1500.0Hz	1000.0Hz	©
P0.05	Limite Alto de Freqüência	P0.06~ P0.04	1000.0Hz	0
P0.07	Referência de Freqüência pela IHM	0.00 Hz ~ P0.04	1000.0Hz	0

Grupo P4:controle V/F					
P4.00	Seleção da Curva V/F	0:Curva Linear 1:Cuva Definida pelo Usuario 2:Curva de Torque StepDown(ordem 1.3) 3:Curva de Torque StepDown (ordem 1.7) 3:Curva de Torque StepDown (2.0)	0	0	
P4.03	Freqüência 1 V/F	0.0Hz ~ P4.05	100.0Hz	0	
P4.04	Tensão 1 V/F	0 ~ 100% (Tensão Característica do Motor)	10.0%	0	
P4.05	Freqüência 2 V/F	P4.03 ~ P4.07	600.0Hz	0	
P4.06	Tensão 2 V/F	0~100% (Tensão Característica do Motor)	60.0%	0	
P4.07	Freqüência 3 V/F	0~100% (Freqüência Característica do Motor)	1000.0Hz	0	
P4.08	Tensão 3 V/F	0~100% (Tensão Característica do Motor)	100.0%	0	
P4.09	Limite de Compensação de Escorregamento	0.00~200.0%	0.0%	0	
P4.10	Seleção de Modo Econômico de Energia	0:Desabilitado 1:Habilitado	0	0	

Seção 13.02

Seção 13.03 9.2 Parametros Mostrados na IHM (LCD)

Código da função	Nome	LCD Display
P0.00	Seleção do Modo de Controle	CONTROL MODE
P0.01	Fonte de Comandos para Funcionamento	RUN COMMAND
P0.02	Configuração Teclas UP/DOWN	UP/DOWN SETTING
P0.03	Referência de Velocidade A	FREQ SOURCE A
P0.04	Freqüência Máxima	MAX FREQ
P0.05	Limite Alto de Frêqüência	UP FREQ LIMIT
P0.06	Limite Baixo de Freqüência	LOW FREQ LIMIT
P0.07	Referência de Frequência da IHM	KEYPAD REF FREQ
P0.08	Tempo de Aceleração 0	ACC TIME 0

Código da função	Nome	LCD Display
P0.09	Tempo de Desaceleração 0	DEC TIME 0
P0.10	Seleção da Direção de Funcionamento	RUN DIRECTION
P0.11	Freqüência Portadora	CARRIER FREQ
P0.12	Parâmetros de Auto-Ajuste do Motor	AUTOTUNING
P0.13	Restaurar Parâmetros	RESTORE
P0.14	Função AVR	AVR
P1.00	Modo de Partida	START MODE
P1.01	Freqüência de Partida	START FREQ
P1.02	Tempo de Permanência da Freqüência de Partida	HOLD TIME
P1.03	Corrente de Frenagem DC antes da Partida	START BRAK CURR
P1.04	Tempo de Frenagem DC antes da Partida	START BRAK TIME
P1.05	Modo de Parada	STOP MODE
P1.06	Freqüência para Partida do Freio DC	STOP BRAK FREQ
P1.07	Tempo de Espera Antes da Parada DC	STOP BRAK DELAY
P1.08	Corrente de Frenagem DC	STOP BRAK CURR
P1.09	Tempo de Frenagem DC	STOP BRAK TIME
P1.10	Tempo de Zona Morta entre a Reversão do Motor	FWD/REV DEADTIME
P1.11	Habilitar a Reversão Quando o Inversor está em Funcionamento	FWD/REV ENABLE
P1.12	Reservado	RESERVED
P2.00	Opção G/P	G/P OPTION
P2.01	Potência do Motor	MOTOR RATE POWER
P2.02	Freqüência do Motor	MOTOR RATE FREQ
P2.03	RPM do Motor	MOTOR RATE SPEED
P2.04	Tensão do Motor	MOTOR RATE VOLT
P2.05	Corrente do Motor	MOTOR RATE CURR
P2.06	Resistência do Estator do Motor	STATOR RESISTOR

Código da função	Nome	LCD Display
P2.07	Resistência do Rotor do Motor	ROTOR RESISTOR
P2.08	Indutância de Fulga do Motor	LEAK INDUCTOR
P2.09	Indutância Mutua do Motor	MUTUAL INDUCTOR
P2.10	Corrente do Motor sem Carga	NO LOAD CURR
P3.00	Ganho Proporcional KP1 ASR	ASR Kp1
P3.01	Tempo Integral KI1 ASR	ASR Ki1
P3.02	Chaveamento no Ponto1 ASR	ASR SWITCHPOINT1
P3.03	Ganho Proporcional KP2 ASR	ASR Kp2
P3.04	Tempo Integral KI2 ASR	ASR Ki2
P3.05	Chaveamento no Ponto2 ASR	ASR SWITCHPOINT2
P3.06	Compensação de Escorregamento	VC SLIP COMP
P3.07	Limite de Torque	TORQUE LIMIT
P4.00	Seleção da Curva V/F	V/F CURVE
P4.01	Otimização do Torque	TORQUE BOOST
P4.02	Interrupção da Otimização do Torque	BOOST CUT-OFF
P4.03	Limite de Compensação de Escorregamento V/F	SLIP COMP LIMIT
P4.04	Seleção do Modo Econômico de Energia Automático	ENERGY SAVING
P4.05	Reservado	RESERVED
P5.00	Função do Terminal S1	S1 FUNCTION
P5.01	Função do Terminal S2	S2 FUNCTION
P5.02	Função do Terminal S3	S3 FUNCTION
P5.03	Função do Terminal S4	S4 FUNCTION
P5.04	Liga/Desliga Tempo dos Filtros	Sx FILTER TIMES
P5.05	Modo de Controle do Sentido de Rotação	FWD/REV CONTROL
P5.06	Mudança da Taxa de Configuração UP/DOWN	UP/DOWN RATE
P5.07	Limite Baixo da Al1	AI1 LOW LIMIT

Código da função	Nome	LCD Display
P5.08	Limite Baixo da Al1 Correspondente a Configuração	AI1 LOW SETTING
P5.09	Limite Alto da A1	AI1 UP LIMIT
P5.10	Limite alto da Al1 Correspondente a Configuração	AI1 UP SETTING
P5.11	Tempo do Filtro Constante da Al1	AI1 FILTER TIME
P5.12	Limite Baixo da Al2	AI2 LOW LIMIT
P5.13	Limite Baixo da Al2 Correspondente a Configuração	AI2 LOW SETTING
P5.14	Limite Alto da A2	AI2 UP LIMIT
P5.15	Limite Alto da Al2 Correspondente a Configuração	AI2 UP SETTING
P5.16	Tempo do Filtro Constante da Al2	AI2 FILTER TIME
P6.00	Seleção da Saida Y	Y SELECTION
P6.01	Seleção do Relé de Saída	RO SELECTION
P6.02	Seleção da AO	AO SELECTION
P6.03	Limite Baixo da AO	AO LOW LIMIT
P6.04	Limite Baixo AO Correspondente a Saída	AO LOW OUTPUT
P6.05	Limite Alto da AO	AO UP LIMIT
P6.06	Limite alto AO Correspondente a Saída	AO UP OUTPUT
P7.00	Password	USER PASSWORD
P7.01	Seleção da Lingua	LANGUAGE SELECT
P7.02	Copiar os Parâmetros	PARA COPY
P7.03	seleção da função QUICK/JOG	QUICK/JOG FUNC
P7.04	função da opção STOP/RST	STOP/RST FUNC
P7.05	Seleção IHM	KEYPAD DISPLAY
P7.06	Seleção do Estado do Display com o Inversor em Trabalho	RUNNING DISPLAY
P7.07	Seleção do Estado do Display com o Inversor Parado	STOP DISPLAY

Código da função	Nome	LCD Display
P7.08	Temperatura do Modulo Retificador	RECTIFIER TEMP
P7.09	Temperatura do Modulo IGBT	IGBT TEMP
P7.10	Versão do Software	SOFTWARE VERSION
P7.11	Tempo Acumulado de Funcionamento	TOTAL RUN TIME
P7.12	3º Última Falha	3rd LATEST FAULT
P7.13	Penúltima Falha	2nd LATEST FAULT
P7.14	Falha Corrente	CURRENT FAULT
P7.15	Freqüência de Saída no Momento da Falha	FAULT FREQ
P7.16	Corrente de Saída no Momento da Falha	FAULT CURR
P7.17	Voltagem do Barramento DC no Momento da Falha	FAULT DC VOLT
P7.18	Estado dos Terminais de Entrada no Momento da Falha	FAULT Sx STATUS
P7.19	Estado dos Terminais de Saída no Momento da Falha	FAULT DO STATUS
P8.00	Tempo de Aceleração1	ACC TIME 1
P8.01	Tempo de Desaceleração1	DEC TIME 1
P8.02	Referência de JOG	JOG REF
P8.03	Tempo de Aceleração JOG	JOG ACC TIME
P8.04	Tempo de Desaceleração JOG	JOG DEC TIME
P8.05	Freqüência de Salto	SKIP FREQ
P8.06	Largura da Banda de Freqüência de Salto	SKIP FREQ RANGE
P8.07	Amplitude Transversal	TRAV AMPLITUDE
P8.08	Freqüência Oscilante	JITTER FREQ
P8.09	Tempo de Subida Transversal	TRAV RISE TIME
P8.10	Tempo de Descida Transversal	TRAV FALL TIME
P8.11	Tempo para Auto Reset	AUTO RESET TIMES
P8.12	Intervalo entre Reset	RESET INTERVAL

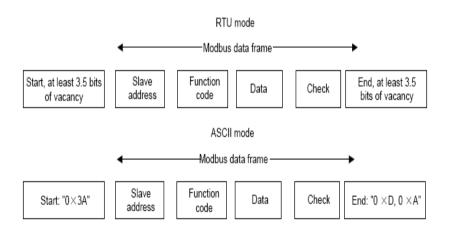
Código da função	Nome	LCD Display
P8.13	Nivel FDT	FDT LEVEL
P8.14	Atraso FDT	FDT LAG
P8.15	Range de Detecção de Freqüência	FAR RANGE
P8.16	Tensão de Disparo de Frenagem	BRAK VOLT
P8.17	Coeficiente de Velocidade de Rotação	SPEED RATIO
P9.00	Seleção do Presset do PID	PID PRESET
P9.01	Presset do PID pela IHM	KEYPAD PID SET
P9.02	Seleção de Realimentação do PID	PID FEEDBACK
P9.03	Características da Saída do PID	PID OUTPUT
P9.04	Ganho Proporcional (Kp)	PROPORTION GAIN
P9.05	Tempo Integral (Ti)	INTEGRAL TIME
P9.06	Tempo Diferencial (Td)	DIFFERENTIA TIME
P9.07	Tempo de Amostragem (T)	SAMPLING CYCLE
P9.08	Limite de Bias	BIAS LIMIT
P9.09	Valor de Detecção de Perda da Realimentação	FEEDBACK LOST
P9.10	Tempo de Detecção de Perda da Realimentação	FEEDBACK LOST(t)
PA.00	Multi-Speed 0	MULTI-SPEED 0
PA.01	Multi-Speed 1	MULTI-SPEED 1
PA.02	Multi-Speed 2	MULTI-SPEED 2
PA.03	Multi-Speed 3	MULTI-SPEED 3
PA.04	Multi-Speed 4	MULTI-SPEED 4
PA.05	Multi-Speed 5	MULTI-SPEED 5
PA.06	Multi-Speed 6	MULTI-SPEED 6
PA.07	Multi-Speed 7	MULTI-SPEED 7
PB.00	Proteção de Sobrecarga do Motor	MOTOR OVERLOAD

Código da função	Nome	LCD Display
PB.01	Proteção de Sobrecarga de Corrente no Motor	OVERLOAD CURR
PB.02	Disparo para Funcionamento do Motor por Inércia	TRIPFREE POINT
PB.03	Taxa de Redução para Funcionamento do Motor por Inércia	TRIPFREE DECRATE
PB.04	Proteção Contra sobre Carga de Parada	OVER VOLT STALL
PB.05	Ponto de Proteção contra sobre Carga de Parada	OV PROTECT POINT
PB.06	Disparo do Limite Alto de Corrente	CURR LIMIT POINT
PB.07	Taxa de Redução de Freqüência quando o Limite de Corrente é Alcançado	FREQ DEC RATE
PC.00	Endereço Local	LOCAL ADDRESS
PC.01	Seleção Baud Rate	BAUD RATE
PC.02	Formato do Dado	DATA FORMAT
PC.03	Tempo de Atraso na Comunicação	COM DELAY TIME
PC.04	Tempo de Timeout da Comunicação	COM TIMEOUT
PC.05	Ação em Caso de erro na Comunicação	COM ERR ACTION
PC.06	Ação de Resposta	RESPONSE ACTION
PD.00	Alta Freqüência de Limite de Restrição a Oscilação	RES OSC L POINT
PD.01	Amplitude de Restrição a Oscilação	RES OSC H POINT
PD.02	Banda de Restrição a Ocilação	RES OSC AMP
PD.03	Restrição a Oscilação	RES OSC BOUND
PD.04	Modo PWM	RES OSC ENABLE
PD.05	Fonte de Configuração do Torque	PWM MODE
PD.06	Configuração de Torque pela IHM	TORQ SOURCE
PD.07	Seleção de Limite alto de Freqüência	KEYPAD TORQ SET
PD.08	Seleção Automática de Limite de Corrente	UP FREQ SOURCE
PD.09	Seleção Automática de Limite de Corrente	CURR LIMIT SEL
PE.00	Password de Fábrica	FACTORY PASSWORD

Artigo XIV. 10. Protocolo de Comunicação

10.1 Interfaces

RS-485: assincrono, Half-Duplex.


Padrão: 8-E-1, 19200bps. Veja Grupo PC parâmetros de configuração.

10.2 Modos de Comunicação

- 10.2.1 O protocolo é Modbus. Além disso as operações comuns de escrita/leitura de registros, possuem comandos do gerenciador de parâmetros.
- 10.2.2 O drive é um escravo na linha de trabalho. A comunicação é ponto a ponto modo mestre/escravo. O inversor não responderá o comando enviado pelo mestre via endereço de transmisão.
- 10.2.3 No caso de comunicação multi-drive ou transmição a longa distância, conectar um resistor 100~120ohms em paralelo com linha de sinal do mestre, isso contribuirá na imunidade a interferência.

10.3 Formato do Protocolo

Protocolo modbus suporta junto modo RTU e ASCII.O formato é ilustrado a seguir:

O modbus adota representação "Big Endian" para a moldura de quadros. Isso significa que quando uma quantidade numérica maior que um byte é transmitido, o byte mais significativo é transmitido primeiro.

Modo RTU

Em modo RTU, o mínimo tempo ocioso Modbus entre os quadros não deve ser menor que 3.5 bytes. O checksum adotado é o metodo CRC-1. Todos os dados exceto o próprio checksum enviados serão envolvidos no cálculo. Por favor consulte a seção: Cheque o CRC para mais informações. Observe que o mínimo de 3.5bytes do tempo ocioso do modbus deve ser mantido, o tempo ocioso inicial e final não precisam ser somado.

A tabela abaixo apresenta o quadro de dados de leitura do parâmetro 002 do endereço do nó1 escravo.

Endereço do nó.	Comando		reço do Ido.	NºIi	ido.	CI	RC
0x01	0x03	0x00	0x02	0x00	0x01	0x25	0xCA

A tabela abaixo apresenta o quadro de resposta do endereço do nó 1 escravo.

Endereço do nó.	Comando	N [≗] dos bytes.	Dado		CF	RC
0x01	0x03	0x02	0x00	0x00	0xB8	0x44

Modo ASCII

Em modo ASCII, o cabeçalho é "0X3A", e rodapé padrão é "0X0D" ou "0X0A" . O rodapé pode ser configurado pelo usuário. Exceto o cabeçalho e o rodapé, serão enviados em dois caracteres ASCII, primero ele envia o dado alto depois o baixo. O dado tem 7/8 bits. "A"~"F" corresponde para o código ASCII as letras miúscula. Checagem LRC é usado . LRC é calculado pela adição de todos os bytes sucessivos da mensagem exceto o cabeçcalho e o rodapé, descartando algum carregado e o resultado de complemento de dois.

Exemplo do quadro de dados modbus em modo ASCII:

O quadro de comando da escrita 0X0003 dentro do endereço 0X1000 do endereço1 do nó escravo é mostrado na tabela abaixo:

LRC checksum = O complemento de (01+06+10+00+0x00+0x03) = 0xE5

	Ca	abeçalho	Endereço Comando do Nó.		ındo	Er	idereço	do Dad	0.	
Code	е		0	1	0	6	1	0	0	0
ASC	II	3A	3	31	30	36	31	30	30	30
			0							
Dado para Escrita			LR	С		Rod	apé			
0	0	0		3	Е	5	CR LF		_F	
30	30	30		33	45	35	C	D	()A

10.4 Função do Protocolo

Diferentes atrasos na resposta podem ser configurados através dos parámetros do drive para se adptar para diferentes necessidades. Para modo RTU, o atraso na resposta não deve ter um intervalo menor que 3.5bytes e para modo ASCII não deve ser menor que 1ms.

O função principal do modbus é leitura e escrita de parâmetros.O protoclo modbus suporta os seguintes comandos:

0x03	Lê o parâmetro da função do inversor e o estado do parâmetro
0x06	Escreva uma única função no parâmetro ou parâmetro de comando no inversor

Todas funções dos parâmetros do drive, controle e parâmetros de estado são mapeados para endereço do dado R/W modbus.

Para obter o dado do endereçamento de cada função dos parâmetros por favor consulte a sexta coluna do capitulo 9.

Para obter o dado do endereçamento de controle e parametros de estado por favor consulte a seguinte tabela.

Descrição do Parâmetro	Endereço	Significado do Valor	R/W Feature	
		0001H: Horário		
		0002H: Anti-Horário		
		0003H: JOG Horário		
Comando de	1000H	0004H: JOG Anti-Horário	W/R	
Controle	1000H	0005H: Parada	VV/IX	
		0006H: Coast to Stop		
		0007H: Reset de Falhas		
		0008H: JOG Parada		
		0001H: Funcionamento Horário		
Estado do Inversor	1001H	0002H: Funcionamento Anti-Horário	R	
	10010	0003H: Standby	r.	
		0004H: Falha		

Configuração de Comunicação	2000Н	Configuração do range de comunicação(-10000~10000) Observação: A configuração da comunicação é a porcetagem do valor relativo(-100.00%~100.00%). Se é configurado como fonte de freqüência, o valor é a porcentagem da freqüência máxima(P0.04). Se está configurado como PID (valor do presset ou valor da realimentação), o valor é a porcentagem do PID.	W/R		
	3000H	Freqüência de Saída	R		
	3001H	Referência de Freqüência	R		
	3002H	Tensão do Barramento DC			
	3003H	Tensão de Saída	R		
	3004H	Corrente de Saída	R		
_	3005H	Velocidade de Rotação	R		
	3006H	Potência de Saída	R		
	3007H	Torque de Saída	R		
	3008H	Valor de Presset do PID	R		
	3009H	Valor de Realimentação do PID	R		
Parâmetros de	300AH	Estado do Terminal de Entrada	R		
Estado	300BH	Estado do Terminal de Saída	R		
	300CH	Valor da Al1	R		
	300DH	Valor da Al2	R		
	300EH	Reservado	R		
	300FH	Reservado	R		
	3010H	Freqüência HDI	R		
	3011H	Reservado	R		
	3012H	Nº do PLC ou Multi-Speed	R		
	3013H	Comprimento do Valor	R		
	3014H	Entrada Externa do Contador	R		
	3015H	Reservado	R		
	3016H	Código do Dispositivo	R		

Endereço de Informação de Falhas	5000H	Esse endereço restaura o tipo de falha do inversor. O significado de cada valor é o mesmo como P7.15	R
Endereço de Informação de Falhas na Comunicação Modbus	5001H	0000H: Sem Falhas 0001H: Password Errado 0002H: Erro do Código de Comando 0003H: Erro CRC 0004H: Endereço Inválido 0005H: Dado Inválido 0006H: Mudança de Parâmetro Inválido 0007H: Sistema de Travamento 0008H: Ocupado (restaurando EEPROM)	R

A tabela acima apresenta o formato dos quadros. Agora nós vamos apresentar os comandos modbus e estrutura de dados em datalhes, no qual é chamado unidade de protocolo de dado simplificado. Também MSB (most significant byte-byte mais significante) e LSB (least significant byte -byte menos significante) pelo mesmo motivo. A descrição abaixo é o formato do dado em modo RTU. O comprimento da unidade do dado em modo ASCII deve ser dobrada.

Unidade do protocolo de dados de leitura dos parâmetros:

Formato requerido:

Unidade de Protocolo de Dados	Comprimento dos Dados(bytes)	Range
Comando	1	0x03
Endereço do Dado	2	0~0xFFFF
Número da Leitura	2	0x0001~0x0010

Formato da resposta(sucedida):

Unidade de Protocolo de Dados	Comprimento dos Dados(bytes)	Range
Comando	1	0x03
Número do Byte Retornado	2	2* Número de leitura
Conteúdo	2* Read Number	

Se o comando está lendo o tipo do inversor (endereço do dado0X3016), o conteúdo do valor na mensagem de resposta é o código do dispositivo:

O bit 8 alto do código do dispositivo é o tipo do inversor e o bit8 baixo do código do dispositivo é o sub- tipodo inversor.

Para detalhes, por favor consulte a seguinte table:

Byte Alto	Modelo	Byte Baixo	Caracteristica
		01	Tipo Universal
		00	Para Fonecimento
		02	de Agua
00	CHV	03	Freqüência Média
			1500HZ
		04	Freqüência Média
		04	3000HZ
		01	Tipo Universal
01	CHE	00	Freqüência Média
		02	1500HZ
02	CHF	01	Tipo Universal

Se falhar a operação, o inversor responderá um formato de mensagem para um comando de falha e um código de erro. O comando de falha(comando+0X80). O código de erro indica a razão do erro, veja a tabela abaixo:

Valor	Nome	Significado
01H	Comando Ilegal	O comando do mestre não pode ser executado. A razão provável: 1. Esse comando é somente para nova versão e nessa versão não pode ser realizada. 2.O escravo está em estado de falha e não pode executá-lo.
02H	Endereço do Dado llegal.	Alguns endereços de operações são inválidos ou não reconhecidos para acesso.
03H	Valor Ilegal	Quando existem dados inválidos no quadro da mensagem recebida pelo escravo. Observação: esse código de erro não indica o valor do dado para escrita exedida ao range, mas indica que o quadro da mensagem é um quadro ilegal.
06H	Escravo Ocupado	O inversor está ocupado (restaurando EEPROM)
10H	Erro de Password	O password escrito para o endereço de checagem do password não é o mesmo do password configurado pelo P7.00
11H	Checagem de Erro	O CRC(modo RTU) ou LRC(modo ASCII) checagem de aprovação.

12H	Escrita não Permitida.	Somente acontece em comando de escrita, a razão pode ser: 1. O dado para escrita exede o range de acordo com o parâmetro 2. O parâmetro não deve ser modificado agora 3. O terminal ió ceté condo usado.
	O terminal já está sendo usado	
13H	Sistema de Travamento	Quando a proteção do password é ativada e o usuário não destrava a função do parâmetro a função de escrita /leitura retornará esse erro.

Formato da unidade de dado do protocolo do parâmetro somente de escrita:

Formato requerido:

Unidade de dado do protocolo	Comprimento do dado(bytes)	Range
Comando	1	0x06
Endereço do Dado	2	0~0xFFFF
Conteúdo da Escrita	2	0~0xFFFF

Formato da Resposta:(sucedida):

Unidade de dado do protocolo	Comprimento do dado(bytes)	Range
Comando	1	0x06
Endereço do Dado	2	0~0xFFFF
Conteúdo da Escrita	2	0~0xFFFF

Se há falhas na operação, o inversor responderá o formato da mensagem pelo comando de falha e erro do código. O comando de falha é (Comando+0X80). O código de erro indica a razão do erro; veja tabela1.

10.5 Nota:

- 10.5.1 Entre os quadros, o período não deve ser menor que 3.5 bytes, de outra forma a mensagem seria descartada.
- 10.5.2 Seja cuidadoso ao modificar os parâmetros do grupo PC através da comunicação, de outra forma pode causar interrupção na comunicação.
- 10.5.3 No mesmo quadro, se o período entre os dois bytes próximos for maior que 1.5 byte, os bytes anteriores serão assumidos como partida da próxima mensagem, sendo assim a comunicação falhará.

10.6 Checagem CRC

```
Para alta velocidade , use a tabela CRC. O seguinte código fonte em linguagem C é usado para CRC-16.

unsigned int crc_cal_value(unsigned char *data_value,unsigned char data_length) {

int i;

unsigned int crc_value=0xffff;

while(data_length--) {

crc_value^=*data_value++;

for(i=0;i<8;i++)

{

if(crc_value&0x0001)crc_value=(crc_value>>1)^0xa001;

else crc_value=crc_value>>1;

}

return(crc_value);
```

10.7 Exemplo

10.7.1 Modo RTU, leitura de dois lados do 0004H

O comando Requerido é:

Partida	T1-T2-T3-T4 (tempo de transmissão de 3.5 bytes)	
Endereço do Nó	01H	
Comando	03H	
Byte Alto do Endereço de Partida	00Н	
Byte Baixo do Endereço de Partida	04H	
Byte Alto Endereço do Número do Dado	00Н	
Byte Baixo do Endereço do Número do Dado	02H	
Byte Baixo do CRC	85H	
Byte Alto do CRC	САН	
END	T1-T2-T3-T4(tempo de trasmição de 3.5bytes)	

A resposta é :

Partida T1-T2-T3-T4 (transmission time of 3.5 by		
Endereço do Nó	01H	
Comando	03H	
Byte Alto do Endereço de Partida	04H	
Byte Alto de 0004H	00H	
Byte Baixo de 0004H	00Н	
Byte Alto de 0005H	00Н	
Byte Baixo de 0005H	00Н	
Byte Baixo do CRC	43H	
Byte Alto do CRC	07H	
END	T1-T2-T3-T4 (tempo de trasmição de 3.5bytes)	

10.7.2 Modo ASCII, leitura de dados do 0004H

O comando Requerido é:

O comando Requerido é:	
Partida	· ·
Endereço do Nó	'0'
Endereço do No	'1'
Comando	'0'
Comando	'3'
Byte Alto do Endereço de Partida	'0'
Byte Aito do Endereço de Faitida	'0'
Byte Baixo da Palavra de Partida	'0'
Byte Baixo da Falavia de Faltida	'4'
Byte Alto do Número do Dado	'0'
Byte Aito do Numero do Dado	'0'
Byte Baixo do Número do Dado	'0'
Byte Baixo do Numero do Bado	'2'
LRC CHK Hi	'F'
LRC CHK Lo	'6'
END Lo	CR
END Hi	LF

A resposta é

Partida	
Endereço do Nó	,0,
Lildereço do No	'1'
Comando	,0,
Comando	'3'
Número do Byte Retornado	,0,
Numero do Byte Netomado	'4'
Byte Alto do 0004H	,0,
Byte Aito do 000411	·0·
Byte Baixo do 0004H	'0'
Byte Baixe do 000411	'0'
Byte Alto do 0005H	·0·
Byte Aito do 000311	'0'
Byte Baixo do 0005H	'0'
Byte Baixe do 000011	·0·
LRC CHK Lo	'F'
LRC CHK Hi	'8'
END Lo	CR
END Hi	LF

10.7.3 Modo RTU, escrita (1388H) endereço 0008H, endereço 02 nó escravo.

O comando Requerido é:

Partida	T1-T2-T3-T4 (tempo de transmissão de 3.5 bytes)		
Endereço do Nó	02H		
Comando	06H		
Byte Alto do end. de Partida	00Н		
Byte Baixo do end. de Partida	08H		
Byte Alto end. do Número do Dado	13H		
Byte Baixo do end. do Número do Dado	88H		
Byte Baixo do CRC	05H		
Byte Alto do CRC	6DH		
END	T1-T2-T3-T4(tempo de trasmição de 3.5bytes)		

Modo ASCII, escrito(5000)

Partida	T1-T2-T3-T4 (tempo de transmissão 3.5 bytes)
Endereço do Nó	02H
Comando	06Н
Byte Alto do end. de Partida	00Н
Byte Baixo do end. de Partida	08H
Byte Alto end. do número do Dado	13H
Byte Baixo do end. do número do Dado	88H
Byte Baixo do CRC	05H
Byte Alto do CRC	6DH
END	T1-T2-T3-T4(tempo de trasmição de 3.5bytes)

10.7.4 Modo ASCII, escrito 5000(1388H) endereço 0008H, endereço 2 nó escravo.

O comando é Requerido:

O comando e Requendo.				
Partida	.,,			
Endereço do Nó	'0'			
Endereço do No	'2'			
Comando	,0,			
Comando	'6'			
Byte Alto do Endereço do Dado	'0'			
Byte Aito do Endereço do Bado	'0'			
Byte Baixo do Endereço do Dado	,0,			
Byte Balko do Endereço do Bado	'8'			
Byte Alto do Conteúdo de Escrita	'1'			
Byte Aito do Conteddo de Escrita	·3·			
Byte Baixo do Conteúdo de Escrita	'8'			
Byte Baixo do Conteddo de Escrita	'8'			
LRC CHK Hi	' 5'			
LRC CHK Lo	'5'			
END Lo	CR			

END Hi	LF
O comando de Resposta é:	
Partida	6,7 •
Endereço do Nó	' 0'
Lildereço do No	'2'
Comando	' 0'
Comando	' 6'
Byte Alto do Endereço do Dado	' 0'
Byte Aito do Endereço do Bado	' 0'
Byte Baixo do Endereço do Dado	' 0'
Byte Baixo do Endereço do Bado	'8'
Byte Alto do Conteúdo de Escrita	'1'
Byte Aito do Conteddo de Escrita	'3'
Byte Baixo do Conteúdo de Escrita	'8'
Byte Baixo do Conteddo de Escrita	'8'
LRC CHK Hi	' 5'
LRC CHK Lo	' 5'
END Lo	CR
END Hi	LF

1. INTRODUÇÃO

a) 1.1 Especificações Técnicas

•	Entrac	las e Saídas				
		Range de tensão de entrada:	380/220V ±15%	1		
		Range de entrada de freqüência:	47~63Hz			
		Range de tensão de saída	0 ~ tensão de e	ntrada		
		Range de Freqüência de saída:	0 ~ 600 Hz			
•	Espec	ificações				
		Entrada digital programável:				
		Possui 4 terminais dos quais podem se	r aceitas entrada:	s on/off		
		Entrada analógica programável:				
		Al1 0 ~ 10 V; Al2 pode ser configurada	de 0 ~ 10 V ou c	le 0 ~ 20 mA		
		Saída de coletor aberto programável:				
		Possui terminal de saída (saída de co	letor aberto ou s	saída pulsante	de alta	
		velocidade)				
		Relê de saída: Possui um terminal de s	saída			
		Saída analógica: Possui um terminal d	_	a cuja saída po	ode ser	
		$0/4 \sim 20$ mA ou $0 \sim 10$ V , conforme esc	colhido.			
•	Princi	pais funções de controle				
		Modo de controle: Controle vetorial "Se	nsorless" (SVC),	controle V/F.		
	☐ Capacidade de sobrecarga:					
		60s com 150% da corrente nominal, 10			I;	
		Torque de partida: 150% do torque nom	` ').		
		☐ Range de ajuste de velocidade: 1:100 (SVC)				
		Precisão de velocidade +/- 0,5% da velo	ocidade máxima	(SVC)		
		Frequência Portadora				
	☐ Fonte de referência de freqüência: IHM, entrada analógica de comunicação					
	serial, multspeed, PID, etc. A combinação de multimodos e chaveamento					
		entre diferentes modos pode ser realiza				
		Função de controle de torque: Permite	muitipios niveis d	e torques		
		Função de controle de PID	:			
		Função de controle Multispeed: 8 veloc	idades podem se	r configuradas		
		Função de controle Transversal				
		□ Sem parada instantânea				
		Função de traçagem de velocidade: Partida suave do motor				
	☐ Tecla QUICK/JOG: Tecla de atalho configurável					
	☐ Função automática de regulagem de tensão (AVR):					
	☐ Função de estabilização de tensão ☐ Existe até 24 protecões contra-falha:					
		Existe até 24 proteções contra-falha: Proteção contra sobre-corrente.	sobre-tensão,	sub-tensão,	cuner	
	_	aquecimento, falta de fase, sobre-carga	*	3ub-10113aU,	super	
		aquecimento, iaita de iase, sobre-carga	, 610.			

1.2 Descrição da placa de identificação

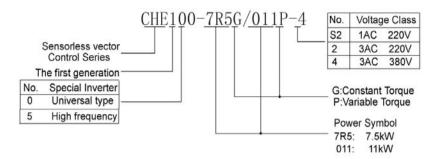


Figura 1.1 Descrição da placa de identificação.

1.3 Guia de Seleção

Modelo No.	Potência de Saída (kW)	Corrente de Entrada (A)	Corrente de saída (A)	Potência do Motor (KW)	Tamanho
1AC 220V -15%~15%					
CHE100-0R4G-S2	0.4	5.4	2.3	0.4	Α
CHE100-0R7G-S2	0.75	8.2	4.5	0.75	Α
CHE100-1R5G-S2	1.5	14.2	7.0	1.5	В
CHE100-2R2G-S2	2.2	23.0	10	2.2	В
3AC 220V -15%~15%					
CHE100-0R7G-2	0.75	5.0	4.5	0.75	Α
CHE100-1R5G-2	1.5	7.7	7	1.5	В
CHE100-2R2G-2	2.2	11.0	10	2.2	В
CHE100-004G-2	4.0	17.0	16	3.7	С
CHE100-5R5G-2	5.5	21.0	20	5.5	С
CHE100-7R5G-2	7.5	31.0	30	7.5	D
CHE100-011G-2	11.0	43.0	42	11.0	Е
CHE100-015G-2	15.0	56.0	55	15.0	Е
CHE100-018G-2	18.5	71.0	70	18.5	Е
CHE100-022G-2	22.0	81.0	80	22.0	F

CHE100-030G-2 30.0 112.0 110 30.0 F CHE100-037G-2 37.0 132.0 130 37.0 F CHE100-045G-2 45.0 163.0 160 45.0 G 3AC 380V -15%-15% USAC 380V -15%-15% CHE100-0R7G-4 0.75 3.4 2.5 0.75 B CHE100-1R5G-4 1.5 5.0 3.7 1.5 B CHE100-2R2G-4 2.2 5.8 5 2.2 B CHE100-9R6G/7R5P-4 4.0/5.5 10/15 9/13 4.0/5.5 C CHE100-7R5G/011P-4 7.5/11 20/26 17/25 7.5/11 D CHE100-11G/015P-4 11/15 26/35 25/32 11/15 D CHE100-018G/022P-4 15/18.5 35/38 32/37 15/18.5 D CHE100-022G/030P-4 22/30 46/62 45/60 22/30 E CHE100-030G/037P-4 30/37 62/76 60/75 30/37 E			I	ı	ı	1	
CHE100-045G-2 45.0 163.0 160 45.0 G 3AC 380V – 15%~15% CHE100-0R7G-4 0.75 3.4 2.5 0.75 B CHE100-1R5G-4 1.5 5.0 3.7 1.5 B CHE100-2R2G-4 2.2 5.8 5 2.2 B CHE100-094G/5R5P-4 4.0/5.5 10/15 9/13 4.0/5.5 C CHE100-5R5G/7R5P-4 5.5/7.5 15/20 13/17 5.5/7.5 C CHE100-7R5G/011P-4 7.5/11 20/26 17/25 7.5/11 D CHE100-01IG/015P-4 11/15 26/35 25/32 11/15 D CHE100-018G/022P-4 18.5/22 38/46 37/45 18.5/22 E CHE100-022G/030P-4 22/30 46/62 45/60 22/30 E CHE100-030G/037P-4 30/37 62/76 60/75 30/37 E CHE100-037G/045P-4 37/45 76/90 75/90 37/45 F CHE100-055G/075P-4	CHE100-030G-2	30.0	112.0	110	30.0	F	
AC 380V -15%-15% CHE100-0R7G-4 0.75 3.4 2.5 0.75 B CHE100-1R5G-4 1.5 5.0 3.7 1.5 B CHE100-2R2G-4 2.2 5.8 5 2.2 B CHE100-004G/5R5P-4 4.0/5.5 10/15 9/13 4.0/5.5 C CHE100-5R5G/7R5P-4 5.5/7.5 15/20 13/17 5.5/7.5 C CHE100-7R5G/011P-4 7.5/11 20/26 17/25 7.5/11 D CHE100-011G/015P-4 11/15 26/35 25/32 11/15 D CHE100-015G/018P-4 15/18.5 35/38 32/37 15/18.5 D CHE100-018G/022P-4 18.5/22 38/46 37/45 18.5/22 E CHE100-022G/030P-4 22/30 46/62 45/60 22/30 E CHE100-030G/037P-4 30/37 62/76 60/75 30/37 E CHE100-037G/045P-4 37/45 76/90 75/90 37/45 F	CHE100-037G-2	37.0	132.0	130	37.0	F	
CHE100-0R7G-4 0.75 3.4 2.5 0.75 B CHE100-1R5G-4 1.5 5.0 3.7 1.5 B CHE100-2R2G-4 2.2 5.8 5 2.2 B CHE100-004G/5R5P-4 4.0/5.5 10/15 9/13 4.0/5.5 C CHE100-5R5G/7R5P-4 5.5/7.5 15/20 13/17 5.5/7.5 C CHE100-7R5G/011P-4 7.5/11 20/26 17/25 7.5/11 D CHE100-011G/015P-4 11/15 26/35 25/32 11/15 D CHE100-015G/018P-4 15/18.5 35/38 32/37 15/18.5 D CHE100-018G/022P-4 18.5/22 38/46 37/45 18.5/22 E CHE100-030G/037P-4 30/37 62/76 60/75 30/37 E CHE100-037G/045P-4 37/45 76/90 75/90 37/45 F CHE100-045G/055P-4 45/55 90/105 90/110 45/55 F CHE100-05G/075P-4 55/75	CHE100-045G-2	45.0	163.0	160	45.0	G	
CHE100-1R5G-4 1.5 5.0 3.7 1.5 B CHE100-2R2G-4 2.2 5.8 5 2.2 B CHE100-004G/5R5P-4 4.0/5.5 10/15 9/13 4.0/5.5 C CHE100-5R5G/7R5P-4 5.5/7.5 15/20 13/17 5.5/7.5 C CHE100-7R5G/011P-4 7.5/11 20/26 17/25 7.5/11 D CHE100-011G/015P-4 11/15 26/35 25/32 11/15 D CHE100-015G/018P-4 15/18.5 35/38 32/37 15/18.5 D CHE100-018G/022P-4 18.5/22 38/46 37/45 18.5/22 E CHE100-03G/030P-4 22/30 46/62 45/60 22/30 E CHE100-030G/037P-4 30/37 62/76 60/75 30/37 E CHE100-037G/045P-4 37/45 76/90 75/90 37/45 F CHE100-055G/075P-4 55/75 105/140 110/150 55/75 F CHE100-090G/110P-4 90/	3AC 380V –15%~15%						
CHE100-2R2G-4 2.2 5.8 5 2.2 B CHE100-004G/5R5P-4 4.0/5.5 10/15 9/13 4.0/5.5 C CHE100-5R5G/7R5P-4 5.5/7.5 15/20 13/17 5.5/7.5 C CHE100-7R5G/011P-4 7.5/11 20/26 17/25 7.5/11 D CHE100-011G/015P-4 11/15 26/35 25/32 11/15 D CHE100-015G/018P-4 15/ 18.5 35/38 32/37 15/ 18.5 D CHE100-018G/022P-4 18.5/ 22 38/46 37/45 18.5/ 22 E CHE100-022G/030P-4 22/30 46/62 45/60 22/30 E CHE100-037G/045P-4 30/37 62/76 60/75 30/37 E CHE100-037G/045P-4 45/55 90/105 90/110 45/55 F CHE100-055G/075P-4 55/75 105/ 140 110/ 150 55/75 F CHE100-090G/110P-4 90/110 160/ 210 176/ 210 90/110 G CHE100-132G/160P-4 132/160 240/ 290 250/ 300 132/160 H CHE100-185G/200P-4 185/200 330/ 370 340/ 380 185/200 H CHE100-185G/200P-4 200/220 370/ 410 380/ 415 200/220 I CHE100-220G/250P-4 250/280 460/ 500 470/ 520 250/280 I CHE100-250G/280P-4 250/280 460/ 500 470/ 520 250/280 I CHE100-250G/280P-4 250/280 460/ 500 520/ 600 280/315 I	CHE100-0R7G-4	0.75	3.4	2.5	0.75	В	
CHE100-004G/5R5P-4 4.0/5.5 10/15 9/13 4.0/5.5 C CHE100-5R5G/7R5P-4 5.5/7.5 15/20 13/17 5.5/7.5 C CHE100-7R5G/011P-4 7.5/11 20/26 17/25 7.5/11 D CHE100-011G/015P-4 11/15 26/35 25/32 11/15 D CHE100-015G/018P-4 15/ 18.5 35/38 32/37 15/ 18.5 D CHE100-018G/022P-4 18.5/ 22 38/46 37/45 18.5/ 22 E CHE100-022G/030P-4 22/30 46/62 45/60 22/30 E CHE100-030G/037P-4 30/37 62/76 60/75 30/37 E CHE100-037G/045P-4 37/45 76/90 75/90 37/45 F CHE100-055G/075P-4 45/55 90/105 90/110 45/55 F CHE100-075G/090P-4 75/90 140/ 160 150/ 176 75/90 G CHE100-090G/110P-4 90/110 160/ 210 176/ 210 90/110 G CHE100-132G/160P-4 132/160 240/ 290 250/ 300 132/160 H CHE100-185G/200P-4 185/200 330/ 370 340/ 380 185/200 H CHE100-185G/200P-4 185/200 330/ 370 340/ 380 185/200 H CHE100-220G/250P-4 220/220 410/ 460 415/ 470 220/250 I CHE100-220G/250P-4 250/280 460/ 500 470/ 520 250/280 I CHE100-250G/280P-4 250/280 460/ 500 470/ 520 250/280 I CHE100-250G/280P-4 250/280 460/ 500 470/ 520 250/280 I	CHE100-1R5G-4	1.5	5.0	3.7	1.5	В	
CHE100-5R5G/7R5P-4 5.5/7.5 15/20 13/17 5.5/7.5 C CHE100-7R5G/011P-4 7.5/11 20/26 17/25 7.5/11 D CHE100-011G/015P-4 11/15 26/35 25/32 11/15 D CHE100-018G/022P-4 15/18.5 35/38 32/37 15/18.5 D CHE100-018G/022P-4 18.5/22 38/46 37/45 18.5/22 E CHE100-022G/030P-4 22/30 46/62 45/60 22/30 E CHE100-030G/037P-4 30/37 62/76 60/75 30/37 E CHE100-037G/045P-4 37/45 76/90 75/90 37/45 F CHE100-045G/055P-4 45/55 90/105 90/110 45/55 F CHE100-075G/090P-4 75/90 140/160 150/176 75/90 G CHE100-090G/110P-4 90/110 160/210 176/210 90/110 G CHE100-132G/160P-4 132/160 240/290 250/300 132/160 H <	CHE100-2R2G-4	2.2	5.8	5	2.2	В	
CHE100-7R5G/011P-4 7.5/11 20/26 17/25 7.5/11 D CHE100-011G/015P-4 11/15 26/35 25/32 11/15 D CHE100-015G/018P-4 15/18.5 35/38 32/37 15/18.5 D CHE100-018G/022P-4 18.5/22 38/46 37/45 18.5/22 E CHE100-022G/030P-4 22/30 46/62 45/60 22/30 E CHE100-030G/037P-4 30/37 62/76 60/75 30/37 E CHE100-037G/045P-4 37/45 76/90 75/90 37/45 F CHE100-045G/055P-4 45/55 90/105 90/110 45/55 F CHE100-055G/075P-4 55/75 105/140 110/150 55/75 F CHE100-075G/090P-4 75/90 140/160 150/176 75/90 G CHE100-110G/132P-4 110/132 210/240 210/250 110/132 G CHE100-160G/185P-4 160/185 290/330 300/340 160/185 H CHE100-185G/200P-4 185/200 330/370 340/380 185/200 H CHE100-200G/220P-4 200/220 370/410 380/415 200/220 I CHE100-220G/250P-4 220/250 410/460 415/470 220/250 I CHE100-220G/250P-4 250/280 460/500 470/520 250/280 I CHE100-280G/315P-4 280/315 500/580 520/600 280/315 I	CHE100-004G/5R5P-4	4.0/5.5	10/15	9/13	4.0/5.5	С	
CHE100-011G/015P-4 11/15 26/35 25/32 11/15 D CHE100-015G/018P-4 15/ 18.5 35/38 32/37 15/ 18.5 D CHE100-018G/022P-4 18.5/ 22 38/46 37/45 18.5/ 22 E CHE100-022G/030P-4 22/30 46/62 45/60 22/30 E CHE100-030G/037P-4 30/37 62/76 60/75 30/37 E CHE100-037G/045P-4 37/45 76/90 75/90 37/45 F CHE100-045G/055P-4 45/55 90/105 90/110 45/55 F CHE100-055G/075P-4 55/75 105/ 140 110/ 150 55/75 F CHE100-075G/090P-4 75/90 140/ 160 150/ 176 75/90 G CHE100-110G/132P-4 110/132 210/ 240 210/ 250 110/132 G CHE100-132G/160P-4 132/160 240/ 290 250/ 300 132/160 H CHE100-160G/185P-4 160/185 290/ 330 300/ 340 160/185 H CHE100-185G/200P-4 185/200 330/ 370 340/ 380 185/200 H CHE100-220G/220P-4 220/220 370/ 410 380/ 415 200/220 I CHE100-220G/250P-4 250/280 460/ 500 470/ 520 250/280 I CHE100-280G/315P-4 280/315 500/ 580 520/ 600 280/315 I	CHE100-5R5G/7R5P-4	5.5/7.5	15/20	13/17	5.5/7.5	С	
CHE100-015G/018P-4 15/ 18.5 35/38 32/37 15/ 18.5 D CHE100-018G/022P-4 18.5/ 22 38/46 37/45 18.5/ 22 E CHE100-022G/030P-4 22/30 46/62 45/60 22/30 E CHE100-030G/037P-4 30/37 62/76 60/75 30/37 E CHE100-037G/045P-4 37/45 76/90 75/90 37/45 F CHE100-045G/055P-4 45/55 90/105 90/110 45/55 F CHE100-055G/075P-4 55/75 105/ 140 110/ 150 55/75 F CHE100-075G/090P-4 75/90 140/ 160 150/ 176 75/90 G CHE100-090G/110P-4 90/110 160/ 210 176/ 210 90/110 G CHE100-110G/132P-4 110/132 210/ 240 210/ 250 110/132 G CHE100-132G/160P-4 132/160 240/ 290 250/ 300 132/160 H CHE100-185G/200P-4 185/200 330/ 370 340/ 380 185/200 H CHE100-200G/220P-4 200/220 370/ 410 380/ 415 200/220 I CHE100-220G/250P-4 220/250 410/ 460 415/ 470 220/250 I CHE100-250G/280P-4 250/280 460/ 500 470/ 520 250/280 I CHE100-280G/315P-4 280/315 500/ 580 520/ 600 280/315 I	CHE100-7R5G/011P-4	7.5/11	20/26	17/25	7.5/11	D	
CHE100-018G/022P-4 18.5/ 22 38/46 37/45 18.5/ 22 E CHE100-022G/030P-4 22/30 46/62 45/60 22/30 E CHE100-030G/037P-4 30/37 62/76 60/75 30/37 E CHE100-037G/045P-4 37/45 76/90 75/90 37/45 F CHE100-045G/055P-4 45/55 90/105 90/110 45/55 F CHE100-055G/075P-4 55/75 105/ 140 110/ 150 55/75 F CHE100-075G/090P-4 75/90 140/ 160 150/ 176 75/90 G CHE100-090G/110P-4 90/110 160/ 210 176/ 210 90/110 G CHE100-110G/132P-4 110/132 210/ 240 210/ 250 110/132 G CHE100-132G/160P-4 132/160 240/ 290 250/ 300 132/160 H CHE100-160G/185P-4 160/185 290/ 330 300/ 340 160/185 H CHE100-185G/200P-4 185/200 330/ 370 340/ 380 185/200 H CHE100-220G/220P-4 220/220 370/ 410 380/ 415 200/220 I CHE100-250G/280P-4 250/280 460/ 500 470/ 520 250/280 I CHE100-280G/315P-4 280/315 500/ 580 520/ 600 280/315 I	CHE100-011G/015P-4	11/15	26/35	25/32	11/15	D	
CHE100-022G/030P-4 22/30 46/62 45/60 22/30 E CHE100-030G/037P-4 30/37 62/76 60/75 30/37 E CHE100-037G/045P-4 37/45 76/90 75/90 37/45 F CHE100-045G/055P-4 45/55 90/105 90/110 45/55 F CHE100-055G/075P-4 55/75 105/ 140 110/ 150 55/75 F CHE100-075G/090P-4 75/90 140/ 160 150/ 176 75/90 G CHE100-090G/110P-4 90/110 160/ 210 176/ 210 90/110 G CHE100-110G/132P-4 110/132 210/ 240 210/ 250 110/132 G CHE100-132G/160P-4 132/160 240/ 290 250/ 300 132/160 H CHE100-160G/185P-4 160/185 290/ 330 300/ 340 160/185 H CHE100-200G/220P-4 200/220 370/ 410 380/ 415 200/220 I CHE100-220G/250P-4 220/250 410/ 460 415/ 470 220/250 I CHE100-250G/280P-4 250/280 460/ 500 470/ 520 250/280 I CHE100-280G/315P-4 280/315 500/ 580 520/ 600 280/315 I	CHE100-015G/018P-4	15/ 18.5	35/38	32/37	15/ 18.5	D	
CHE100-030G/037P-4 30/37 62/76 60/75 30/37 E CHE100-037G/045P-4 37/45 76/90 75/90 37/45 F CHE100-045G/055P-4 45/55 90/105 90/110 45/55 F CHE100-055G/075P-4 55/75 105/140 110/150 55/75 F CHE100-075G/090P-4 75/90 140/160 150/176 75/90 G CHE100-090G/110P-4 90/110 160/210 176/210 90/110 G CHE100-110G/132P-4 110/132 210/240 210/250 110/132 G CHE100-132G/160P-4 132/160 240/290 250/300 132/160 H CHE100-185G/200P-4 185/200 330/370 340/380 185/200 H CHE100-200G/220P-4 200/220 370/410 380/415 200/220 I CHE100-250G/250P-4 220/250 410/460 415/470 220/250 I CHE100-250G/280P-4 250/280 460/500 470/520 250/280 I <td>CHE100-018G/022P-4</td> <td>18.5/ 22</td> <td>38/46</td> <td>37/45</td> <td>18.5/ 22</td> <td>Е</td>	CHE100-018G/022P-4	18.5/ 22	38/46	37/45	18.5/ 22	Е	
CHE100-037G/045P-4 37/45 76/90 75/90 37/45 F CHE100-045G/055P-4 45/55 90/105 90/110 45/55 F CHE100-055G/075P-4 55/75 105/140 110/150 55/75 F CHE100-075G/090P-4 75/90 140/160 150/176 75/90 G CHE100-090G/110P-4 90/110 160/210 176/210 90/110 G CHE100-110G/132P-4 110/132 210/240 210/250 110/132 G CHE100-132G/160P-4 132/160 240/290 250/300 132/160 H CHE100-160G/185P-4 160/185 290/330 300/340 160/185 H CHE100-280G/220P-4 185/200 330/370 340/380 185/200 H CHE100-220G/220P-4 200/220 370/410 380/415 200/220 I CHE100-250G/280P-4 220/250 410/460 415/470 220/250 I CHE100-280G/315P-4 280/315 500/580 520/600 280/315 <	CHE100-022G/030P-4	22/30	46/62	45/60	22/30	Е	
CHE100-045G/055P-4 45/55 90/105 90/110 45/55 F CHE100-055G/075P-4 55/75 105/140 110/150 55/75 F CHE100-075G/090P-4 75/90 140/160 150/176 75/90 G CHE100-090G/110P-4 90/110 160/210 176/210 90/110 G CHE100-110G/132P-4 110/132 210/240 210/250 110/132 G CHE100-132G/160P-4 132/160 240/290 250/300 132/160 H CHE100-160G/185P-4 160/185 290/330 300/340 160/185 H CHE100-185G/200P-4 185/200 330/370 340/380 185/200 H CHE100-200G/220P-4 200/220 370/410 380/415 200/220 I CHE100-250G/250P-4 220/250 410/460 415/470 220/250 I CHE100-250G/280P-4 250/280 460/500 470/520 250/280 I CHE100-280G/315P-4 280/315 500/580 520/600 280/315	CHE100-030G/037P-4	30/37	62/76	60/75	30/37	Е	
CHE100-055G/075P-4 55/75 105/140 110/150 55/75 F CHE100-075G/090P-4 75/90 140/160 150/176 75/90 G CHE100-090G/110P-4 90/110 160/210 176/210 90/110 G CHE100-110G/132P-4 110/132 210/240 210/250 110/132 G CHE100-132G/160P-4 132/160 240/290 250/300 132/160 H CHE100-160G/185P-4 160/185 290/330 300/340 160/185 H CHE100-185G/200P-4 185/200 330/370 340/380 185/200 H CHE100-200G/220P-4 200/220 370/410 380/415 200/220 I CHE100-220G/250P-4 220/250 410/460 415/470 220/250 I CHE100-250G/280P-4 250/280 460/500 470/520 250/280 I CHE100-280G/315P-4 280/315 500/580 520/600 280/315 I	CHE100-037G/045P-4	37/45	76/90	75/90	37/45	F	
CHE100-075G/090P-4 75/90 140/ 160 150/ 176 75/90 G CHE100-090G/110P-4 90/110 160/ 210 176/ 210 90/110 G CHE100-110G/132P-4 110/132 210/ 240 210/ 250 110/132 G CHE100-132G/160P-4 132/160 240/ 290 250/ 300 132/160 H CHE100-160G/185P-4 160/185 290/ 330 300/ 340 160/185 H CHE100-185G/200P-4 185/200 330/ 370 340/ 380 185/200 H CHE100-200G/220P-4 200/220 370/ 410 380/ 415 200/220 I CHE100-220G/250P-4 220/250 410/ 460 415/ 470 220/250 I CHE100-250G/280P-4 250/280 460/ 500 470/ 520 250/280 I CHE100-280G/315P-4 280/315 500/ 580 520/ 600 280/315 I	CHE100-045G/055P-4	45/55	90/105	90/110	45/55	F	
CHE100-090G/110P-4 90/110 160/ 210 176/ 210 90/110 G CHE100-110G/132P-4 110/132 210/ 240 210/ 250 110/132 G CHE100-132G/160P-4 132/160 240/ 290 250/ 300 132/160 H CHE100-160G/185P-4 160/185 290/ 330 300/ 340 160/185 H CHE100-185G/200P-4 185/200 330/ 370 340/ 380 185/200 H CHE100-200G/220P-4 200/220 370/ 410 380/ 415 200/220 I CHE100-220G/250P-4 220/250 410/ 460 415/ 470 220/250 I CHE100-250G/280P-4 250/280 460/ 500 470/ 520 250/280 I CHE100-280G/315P-4 280/315 500/ 580 520/ 600 280/315 I	CHE100-055G/075P-4	55/75	105/ 140	110/ 150	55/75	F	
CHE100-110G/132P-4 110/132 210/ 240 210/ 250 110/132 G CHE100-132G/160P-4 132/160 240/ 290 250/ 300 132/160 H CHE100-160G/185P-4 160/185 290/ 330 300/ 340 160/185 H CHE100-185G/200P-4 185/200 330/ 370 340/ 380 185/200 H CHE100-200G/220P-4 200/220 370/ 410 380/ 415 200/220 I CHE100-220G/250P-4 220/250 410/ 460 415/ 470 220/250 I CHE100-250G/280P-4 250/280 460/ 500 470/ 520 250/280 I CHE100-280G/315P-4 280/315 500/ 580 520/ 600 280/315 I	CHE100-075G/090P-4	75/90	140/ 160	150/ 176	75/90	G	
CHE100-132G/160P-4 132/160 240/290 250/300 132/160 H CHE100-160G/185P-4 160/185 290/330 300/340 160/185 H CHE100-185G/200P-4 185/200 330/370 340/380 185/200 H CHE100-200G/220P-4 200/220 370/410 380/415 200/220 I CHE100-220G/250P-4 220/250 410/460 415/470 220/250 I CHE100-250G/280P-4 250/280 460/500 470/520 250/280 I CHE100-280G/315P-4 280/315 500/580 520/600 280/315 I	CHE100-090G/110P-4	90/110	160/ 210	176/ 210	90/110	G	
CHE100-160G/185P-4 160/185 290/ 330 300/ 340 160/185 H CHE100-185G/200P-4 185/200 330/ 370 340/ 380 185/200 H CHE100-200G/220P-4 200/220 370/ 410 380/ 415 200/220 I CHE100-220G/250P-4 220/250 410/ 460 415/ 470 220/250 I CHE100-250G/280P-4 250/280 460/ 500 470/ 520 250/280 I CHE100-280G/315P-4 280/315 500/ 580 520/ 600 280/315 I	CHE100-110G/132P-4	110/132	210/ 240	210/ 250	110/132	G	
CHE100-185G/200P-4 185/200 330/ 370 340/ 380 185/200 H CHE100-200G/220P-4 200/220 370/ 410 380/ 415 200/220 I CHE100-220G/250P-4 220/250 410/ 460 415/ 470 220/250 I CHE100-250G/280P-4 250/280 460/ 500 470/ 520 250/280 I CHE100-280G/315P-4 280/315 500/ 580 520/ 600 280/315 I	CHE100-132G/160P-4	132/160	240/ 290	250/ 300	132/160	Н	
CHE100-200G/220P-4 200/220 370/ 410 380/ 415 200/220 I CHE100-220G/250P-4 220/250 410/ 460 415/ 470 220/250 I CHE100-250G/280P-4 250/280 460/ 500 470/ 520 250/280 I CHE100-280G/315P-4 280/315 500/ 580 520/ 600 280/315 I	CHE100-160G/185P-4	160/185	290/ 330	300/ 340	160/185	Н	
CHE100-220G/250P-4 220/250 410/ 460 415/ 470 220/250 I CHE100-250G/280P-4 250/280 460/ 500 470/ 520 250/280 I CHE100-280G/315P-4 280/315 500/ 580 520/ 600 280/315 I	CHE100-185G/200P-4	185/200	330/ 370	340/ 380	185/200	Н	
CHE100-250G/280P-4 250/280 460/ 500 470/ 520 250/280 I CHE100-280G/315P-4 280/315 500/ 580 520/ 600 280/315 I	CHE100-200G/220P-4	200/220	370/ 410	380/ 415	200/220	I	
CHE100-280G/315P-4 280/315 500/ 580 520/ 600 280/315 I	CHE100-220G/250P-4	220/250	410/ 460	415/ 470	220/250	I	
	CHE100-250G/280P-4	250/280	460/ 500	470/ 520	250/280	I	
CHE100-315G/350P-4 315/350 580/620 600/640 315/350 I	CHE100-280G/315P-4	280/315	500/ 580	520/ 600	280/315	ı	
	CHE100-315G/350P-4	315/350	580/ 620	600/ 640	315/350	I	

1.4 Descrição de Peças

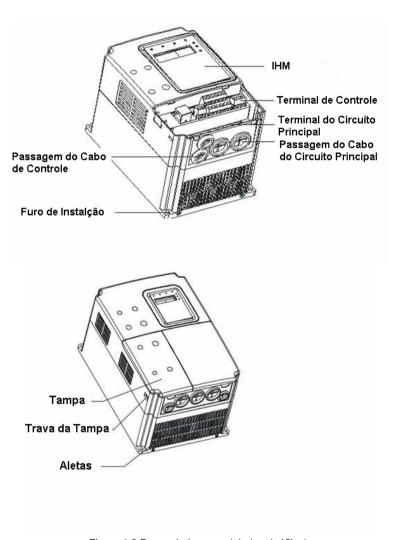
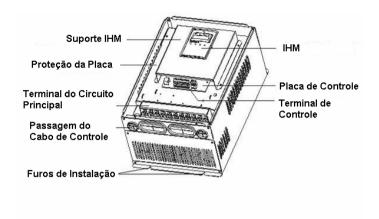



Figura 1.2 Peças do Inversor (abaixo de15kw).

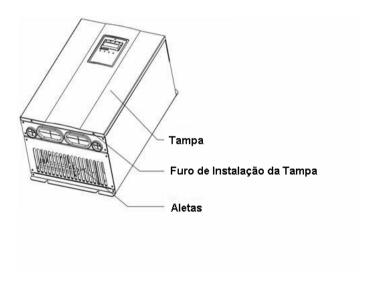


Figura 1.3 Peças do Inversor (18.5kw e acima).

1.5 Dimensões Externas

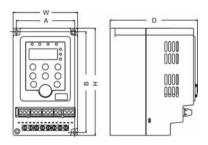


Figura 1.4 Dimensão (0.4~0.75kW 1AC 220V).

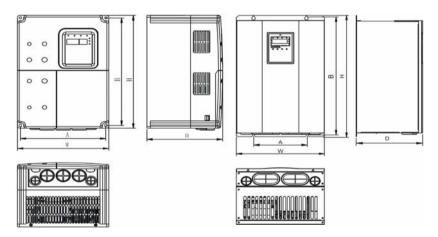


Figura 1.5 Dimensão (0.75~15kW).

Figura 1.6 Dimensão (18.5~110kW).

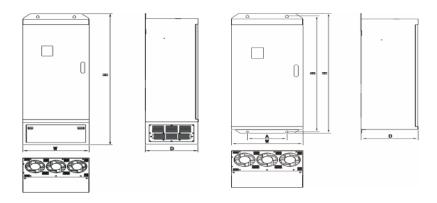


Figura 1.7 Dimensão (132~315kW).

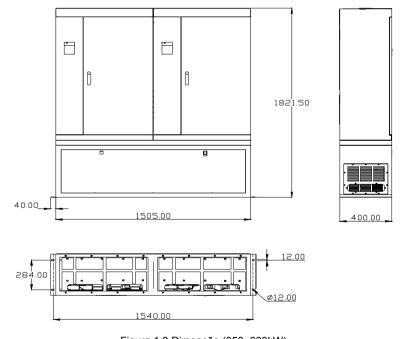


Figura 1.8 Dimensão (350~630kW).

DAKOL INSTRUMENTOS E SISTEMAS LTDA.

www.dakol.com.br info@dakol.com.br Tel: (11) 3231-4544

Potência	Tamanho	A (mm)	B (mm)	H (mm)	W (mm)	D (mm)	Furo Instalação	
(kW)		Dimensão Instalação		Dim	ensão Ext	erna	(mm)	
0.4~0.75 (1AC 220V)	А	76.8	131.6	140	85	115	4	
0.75~2.2	В	110.4	170.2	180	120	140	5	
4~5.5	С	147.5	237.5	250	160	175	5	
7.5~15	D	206	305.5	320	220	180	6.0	
18.5~30	E	176	454.5	467	290	215	6.5	
37~55	F	230	564.5	577	375	270	7.0	
75~110	G	320	738.5	755	460	330	9.0	
132~185	H (sem base)	270	1233	1275	490	391	13.0	
102 103	H (com base)		_	1490	490	391	_	
200~315	I(sem base)	500	1324	1358	750	402	12.5	
200 010	I(com base)	_	_	1670	750	402	_	

2. INSPEÇÃO

ADVERTÊNCIA

 Não instale ou use o inversor se estiver danificado ou faltando alguma peça, caso contrario você pode se ferir.

Ao desembalar o inversor confira os itens abaixo:

- 1 Inspecione a parte exterior do inversor para certificar-se de que não há riscos ou outros danos causados durante o transporte.
- 2 Certifique-se que o manual de operações e o cartão de garantia estão na caixa.
- 3 Verifique se a placa de identificação corresponde ao seu pedido.
- 4 Certifique-se que as peças opcionais, em caso de solicitação, estão na caixa.

Por favor, entre em contato com um representante local se houver qualquer dano no inversor ou em acessórios opcionais.

3. INSTALAÇÃO

Advertência

- Se uma pessoa sem treinamento manipular o dispositivo ou violar qualquer regra de atenção, poderá sofrer lesão séria ou perda total do equipamento. Só é permitido a operação do equipamento por pessoas devidamente treinadas, qualificadas e certificadas.
- O cabo de alimentação de entrada deve ser bem conectado e o equipamento deve ser aterrado com segurança.
- Mesmo se o inversor não estiver em funcionamento os seguintes terminais poderão estar energizados:

Terminal de alimentação: R, S, T

Terminais de conexão do motor: U, V, W

- Quando desligado, o inversor não deve ser instalado antes de 5 minutos, o que garante que o dispositivo estará descarregado completamente.
- A bitola do condutor de aterramento não deve ser menor do que a do cabo de alimentação

Cuidado

- Quando movimentar o inversor, por favor, levante-o pela base e não pelo painel.
- Caso contrário ele pode cair e causar dano físico.
- Instale o inversor sobre material a prova de fogo (tal como metal) para prevenir incêndio
- Quando precisar instalar um ou mais inversores em um único gabinete, deve-se instalar um ventilador para manter a temperatura abaixo de 45°C. Caso contrário poderá causar incêndio ou danificar o dispositivo.

3.1 Requisitos de Ambiente de Trabalho

3.1.1 Temperatura

A variação de temperatura ambiente: -10° C $\sim +40^{\circ}$ C. O inversor sofrerá danos se a temperatura exceder 40° C.

3.1.2 Umidade

O inversor deve ser instalado em local com umidade abaixo de 95% RH

3.1.3 Altitude

A eficiência do inversor será de 100% quando instalado em altitude inferior a 1000m. E perderá a eficiência se instalado em altitude superior a 1000m. Para mais detalhes, por favor, analisar o gráfico abaixo:

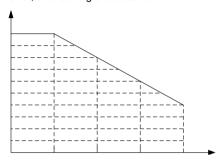


Figura 3.1 Relação entre corrente de saída e altitude.

3.1.4 Impacto e vibração

I out

Não é permitido que o inversor caia, sofra grande impacto, ou seja, instalado em locais onde haja freqüentes vibrações.

3.1.5 Radiação Eletromagnética

100%

Manter distante de fonte de radiação eletromagnética.

3.1.6 Água

Não instalar o inversor em lugares impróprios ou exposições sereno.

3.1.7 Poluição do Ar

Manter longe de poluição tais como poeira, gás corrosivo.

3.1.8 Armazenamento

Não guarde o inversor em ambiente exposto diretamente à luz do sol, vapor, neblina de óleo e vibração. 40%

DAKOL INSTRUMENTOS E SISTEMAS LTDA.

www.dakol.com.br info@dakol.com.br Tel: (11) 3231-4544

3.2 Espaço de Instalação

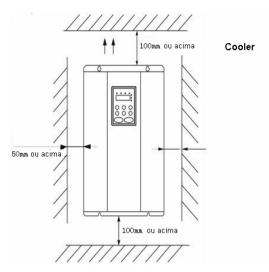


Figura 3.2 Espaço de Segurança

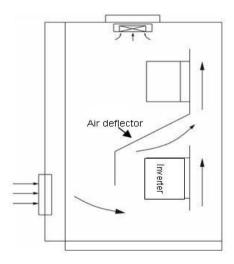


Figura 3.3 Instalação de múltiplos inversores .

3.3 Dimensão do IHM

Figura 3.4 Dimensão interna /corte do painel

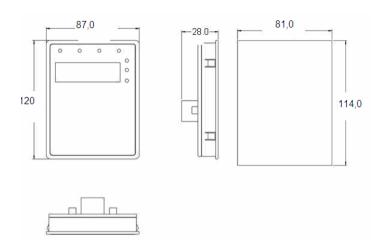
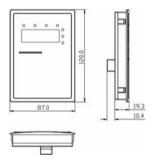



Figura 3.5 Dimensão externa.

3.4 Desmontagem

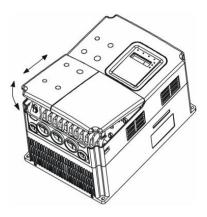


Figura 3.6 Desmontagem da tampa plástica.

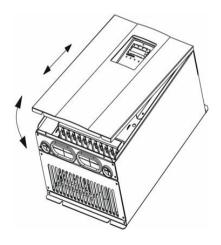


Figura 3.7 Desmontagem da tampa de metal.

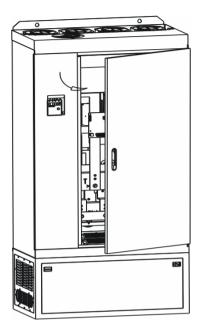


Figura 3.8 Gabinete do inversor aberto

4. LIGAÇÃO

Advertência

- A instalação deve ser feita por um profissional da área elétrica.
- Proibido testar a isolação do cabo que conecta o inversor usando dispositivo de teste de isolação que gere alta tensão.
- Instalar o inversor 5 minutos após a alimentação estar desligada, e o mesmo completamente descarregado.
- Certifique-se que o terminal terra esteja ligado em local aterramento adequado.
- (classe 200V: A resistência do terra deve ser 100 Ω ou menor, classe 400V: A resistência do terra deve ser de 10 Ω ou menor, classe 660 V: A resistência do terra deve ser de 5 Ω ou menor). Caso contrário, pode causar choque elétrico ou incêndio.
- Conecte os terminais de entrada (R,S,T) e os terminais de saída (U,V, W) corretamente.
- Caso contrário causará danos nas peças internas do inversor.
- Não lique ou opere o inversor com as mãos molhadas.
- Caso contrário, o usuário estará exposto ao risco sofrer choque elétrico.

CUIDADO

- Certifique-se que a tensão de alimentação AC satisfaz a tensão especificada do inversor.
- Danos ou incêndios podem ocorrer se a tensão não for correta.
- Conecte os cabos de alimentação e os cabos do motor devidamente apertados.

4.1 Conexão de dispositivos periféricos.

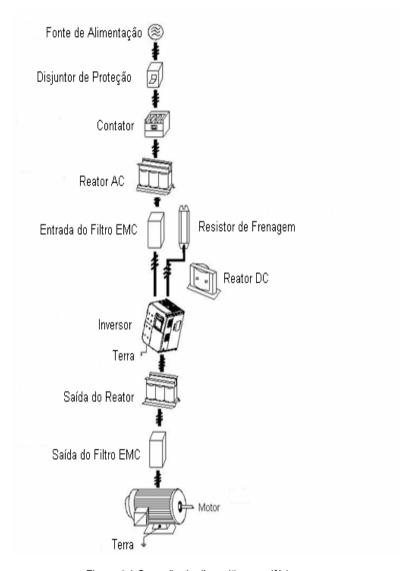


Figura 4.1 Conexão de dispositivos periféricos.

DAKOL INSTRUMENTOS E SISTEMAS LTDA.

www.dakol.com.br info@dakol.com.br Tel: (11) 3231-4544

Seção 1.02 4.2 Configuração dos terminais.

4.2.1 Terminais do circuito principal

Figura 4.2 Terminais do circuito principal (0.4~0.75kW 1AC 220V).

Figura 4.3 Terminais do circuito principal (1.5~2.2kW).

/ ±\	DR	/ _\	R	S	Т	U	٧	W	\oplus
(+)	PD	(-)	Р	OWE	R	N			

Figura 4.4 Terminais do circuito principal (4.0~5.5kW).

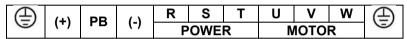


Figura 4.5 Terminais do circuito principal (7.5~15kW).

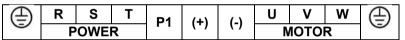


Figura 4.6 Terminais do circuito principal (18.5~110kW).

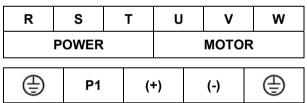


Figura 4.7 Terminais do circuito principal (132~315kW).

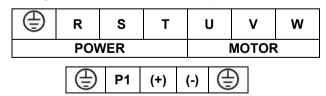


Figura 4.8 Terminais do circuito principal (350~630kW).

Funções dos terminais do circuito principal estão resumidos de acordo com os símbolos dos terminais na tabela seguinte: Ligue os terminais corretamente para o propósito desejado.

Símbolo do Terminal	Descrição da Função
R□S□T	Terminais de entrada trifásico AC
(+)□(-)	Terminais da unidade de frenagem externa
(+)□PB	Terminais do resistor de frenagem externa
P1□(+)	Terminais do reator DC externo
(-)	Terminal negativo do barramento DC
UUVUW	Terminais de saída trifásica
(b)	Terminal terra

(a) 4.2.2 Terminais do circuito de controle.

485+ 485- S1 S2 S3 S4 COM AI2 AO	Y +24V	ROA	ROB	ROC
	.			

Figura 4.9 Terminais do circuito de controle (0.4~0.75kW 1AC 220V).

485+	485-	+10V	AO	COM	Υ	+24V	ROA	ROB	ROC
Al1	GND	Al2	S1	S2	S3	S4			

Figura 4.10 Terminal do circuito de controle (1.5~2.2kW).

														_				
485+	485-	AO	Al1	GND	Al2	+ 10 V	S1	S2	S3	S4	сом	Υ	24V		ROA	ROB	ROC	

Figura 4.11 Terminais de controle (4.0kW e acima).

Unidade Externa de Frenagem Resistor de Frenagem P1 PB (+ (-) U (R 3 Fases 380V M 0 5 ±15% 50/60Hz Série CHE W Т Inversores S1 S2 Entrada Digital S3 Multifuncional S4 Interface para IHM Externa J14 COM 485+ ÷ @ 485-+24V +10V Ajuste de Frequência Frequência Ajuste AI1 Saída Analógica A01 AI2 J15 0 0 0 0-10V 0-10/0-20mA IV 0/4-20mAEntrada GND GND select Lor_V___ PE Υ Saida Multifuncional de Coletor Aberto ROA ROB ROC

4.3 Diagrama de instalação

Figura 4.12 Diagrama de instalação .

i. OBSERVAÇÃO

Relé de Saida

- Inversores entre 18.5kW e 90kW são construídos com reator DC para reduzir o fator de potência. Para os inversores acima de 110 KW, é recomendado instalar reator DC entre P1 e (+).
- Inversores abaixo 15KW são construídos com unidades de freio. Se necessário freio, somente se necessário instalar resistor de frenagem entre PB e (+).
- 3. Para inversores acima de 18.5KW, se necessário freio, deve-se instalar unidade de freio externo entre (+) e(-).

4.4 Especificação da proteção, cabo, contator e reator.

4.4.1 Especificações do disjuntor, cabo e contator.

Modelo No.	Disjuntor de Proteção (A)	Entrada/Saída Cabo (mm²)	Contator AC (A)			
1AC 220V -15%~15%						
CHE100-0R4G-S2	16	2.5	10			
CHE100-0R7G-S2	16	2.5	10			
CHE100-1R5G-S2	20	4	16			
CHE100-2R2G-S2	32	6	20			
3AC 220V -15%~15%						
CHE100-0R4G-2	16	2.5	10			
CHE100-0R7G-2	16	2.5	10			
CHE100-1R5G-2	20	4	16			
CHE100-2R2G-2	32	6	20			
CHE100-004G-2	40	6	25			
CHE100-5R5G-2	63	6	32			
CHE100-7R5G-2	100	10	63			
CHE100-011G-2	125	25	95			
CHE100-015G-2	160	25	120			
CHE100-018G-2	160	25	120			
CHE100-022G-2	200	35	170			
CHE100-030G-2	200	35	170			
CHE100-037G-2	200	35	170			
CHE100-045G-2	250	70	230			

3AC 380V -15%~15%			
CHE100-0R7G-4	10	2.5	10
CHE100-1R5G-4	16	2.5	10
CHE100-2R2G-4	16	2.5	10
CHE100-004G/5R5P-4	25	4	16
CHE100-5R5G/7R5P-4	25	4	16
CHE100-7R5G/011P-4	40	6	25
CHE100-011G/015P-4	63	6	32
CHE100-015G/018P-4	63	6	50
CHE100-018G/022P-4	100	10	63
CHE100-022G/030P-4	100	16	80
CHE100-030G/037P-4	125	25	95
CHE100-037G/045P-4	160	25	120
CHE100-045G/055P-4	200	35	135
CHE100-055G/075P-4	200	35	170
CHE100-075G/090P-4	250	70	230
CHE100-090G/110P-4	315	70	280
CHE100-110G/132P-4	400	95	315
CHE100-132G/160P-4	400	150	380
CHE100-160G/185P-4	630	185	450
CHE100-185G/200P-4	630	185	500
CHE100-220G/250P-4	800	150x2	630
CHE100-250G/280P-4	800	150x2	700
CHE100-280G/315P-4	1000	185x2	780
CHE100-315G/350P-4	1200	240x2	900

4.4.2 Especificações do reator de entrada AC, reator de saída AC e reator DC.

		le entrada			tor de sa	reator de sa aída AC		tor DC
Modelo No.	Corrente	Indutá		Corrente		utância mH□	Corrente	Indutância □mH□
3AC 380\	V -15%~15%							
СН	CHE100-0R7G-4			7	2	2		
CH	IE100-1R5G	-4	5	3.8	5	1.5		
СН	IE100-2R2G	-4	7	2.5	7	1		
CHE1	00-004G/5R	5P-4	10	1.5	10	0.6		
CHE1	00-5R5G/7R	5P-4	15	1.4	15	0.25		
CHE1	00-7R5G/01	1P-4	20	1	20	0.13	23	3.5
CHE1	00-011G/01	5P-4	30	0.6	30	0.087	33	2.4
CHE1	00-015G/01	8P-4	40	0.6	40	0.066	33	1.8
CHE1	00-018G/02	2P-4	50	0.35	50	0.052	80	0.4
CHE1	00-022G/03	0P-4	60	0.28	60	0.045	80	0.4
CHE100-030G/037P-4		80	0.19	80	0.032	80	0.4	
CHE1	00-037G/04	5P-4	90	0.19	90	0.03	110	0.25
CHE1	00-045G/05	5P-4	120	0.13	120	0.023	110	0.25
CHE1	00-055G/07	5P-4	150	0.11	150	0.019	110	0.25
CHE1	00-075G/09	0P-4	200	0.08	200	0.014	180	0.18
CHE1	00-090G/11	0P-4	200	0.08	200	0.014	180	0.18
CHE1	00-110G/13	2P-4	250	0.065	250	0.011	250	0.2
CHE1	00-132G/16	0P-4	290	0.065	290	0.011	326	0.215
CHE1	00-160G/18	5P-4	330	0.05	330	0.01	494	0.142
CHE1	00-185G/20	0P-4	400	0.044	400	0.008	494	0.142
CHE1	00-200G/22	0P-4	400	0.044	400	0.008	494	0.142
CHE1	00-220G/25	0P-4	490	0.035	490	0.005	494	0.126
CHE1	00-250G/28	0P-4	530	0.04	530	0.005	700	0.1
CHE1	00-280G/31	5P-4	600	0.04	600	0.005	700	0.1
CHE1	00-315G/35	0P-4	660	0.025	660	0.004	800	0.08

4.4.3 Especificações do resistor de frenagem

Modelo No.	Unidade d	e Frenagem	Resistor de Frenagem (100% Torque de Frenagem)		
0.4.0.000\/.450/.450/	Ordem No.	Quantidade	Especificação	Quantidade	
3AC 220V -15%~15%			0750/75\\	1	
CHE100-0R4G-2			275Ω/75W	•	
CHE100-0R7G-2			275Ω/75W	1	
CHE100-1R5G-2			138Ω/150W	1	
CHE100-2R2G-2	Embutido	1	91Ω/220W	1	
CHE100-004G-2			52Ω/400W	1	
CHE100-5R5G-2			37.5Ω/550W	1	
CHE100-7R5G-2			27.5Ω/750W	1	
CHE100-011G-2		1	19Ω/1100W	1	
CHE100-015G-2		1	13.6Ω/1500W	1	
CHE100-018G-2	DBU-055-2	1	12Ω/1800W	1	
CHE100-022G-2		1	9Ω/2200W	1	
CHE100-030G-2		1	6.8Ω/3000W	1	
CHE100-037G-2	DBU-055-2	2	11Ω/2000W	2	
CHE100-045G-2	DB0-033-2	2	9Ω/2400W	2	
3AC 380V -15%~15%	I				
CHE100-0R7G-4			900Ω/75W	1	
CHE100-1R5G-4			460Ω/150W	1	
CHE100-2R2G-4			315Ω/220W	1	
CHE100-004G/5R5P-4	Embutido	1	175Ω/400W	1	
CHE100-5R5G/7R5P-4	Lilibatido	'	120Ω/550W	1	
CHE100-7R5G/011P-4			100Ω/750W	1	
CHE100-011G/015P-4			70Ω/1100W	1	
CHE100-015G/018P-4			47Ω/1500W	1	
CHE100-018G/022P-4	DBU-055-4	1	38Ω/2000W	1	
CHE100-022G/030P-4			32Ω/2200W	1	
CHE100-030G/037P-4			23Ω/3000W	1	
CHE100-037G/045P-4			19Ω/3700W	1	
CHE100-045G/055P-4			16Ω/4500W	1	

CHE100-055G/075P-4			13Ω/5500W	1
CHE100-075G/090P-4			19Ω/3700W	2
CHE100-090G/110P-4	DBU-055-4	2	16Ω/4500W	2
CHE100-110G/132P-4			13Ω/5500W	2
CHE100-132G/160P-4	DBU-160-4	1	5Ω/15000W	1
CHE100-160G/185P-4	DB0-100-4	1	3.5Ω/20000W	1
CHE100-185G/200P-4		1	3.5Ω/20000W	1
CHE100-200G/220P-4	DBU-220-4	1	3Ω/25000W	1
CHE100-220G/250P-4		1	3Ω/25000W	1
CHE100-250G/280P-4		1	2.5Ω/30000W	1
CHE100-280G/315P-4	DBU-315-4	1	2.5Ω/30000W	1
CHE100-315G/350P-4		1	2Ω/35000W	1

Observação:

- A seleção acima está baseada na seguinte condição: tensão do barramento DC 700V, 100% de torque de frenagem e 10% de tempo de uso.
- Conexão paralela da unidade de frenagem é útil para otimizar a capacidade de frenagem.
- 3. O fio entre o inversor e a unidade de frenagem deve ser menor do que 5m.
- O fio entre a unidade de frenagem e o resistor de frenagem deve ser menor do que 10m.
- 5. A unidade de frenagem pode ser usada continuamente por 5 minutos. Quando a unidade de frenagem estiver sendo usada, a temperatura do aparelho ficará bem alta, e o usuário não deve tocá-lo para não causar ferimentos.

4.5 Ligação do circuito principal

4.5.1 Ligação dos dispositivos na entrada do circuito principal

4.5.1.1 Circuito de proteção

É necessário conectar o disjuntor que seja compatível com a capacidade do inversor entre a alimentação trifásica e terminais de entrada (R,S,T). A capacidade do freio

1,5~2 vezes a corrente do inversor. Para maiores detalhes, veja <especificações do inversor, cabo e contator>.

4.5.1.2 Contator

Para desenergizar a alimentação quando alguma coisa no sistema está errada, é necessário instalar um contator antes da entrada, para chaveamento da alimentação do circuito principal.

4.5.1.3. Reator AC

Para prevenir um dano causado por uma alta corrente, deve-se instalar um reator AC antes da entrada do inversor. O reator AC protege o inversor contra danos causadas por variações da tensão de entrada ou harmônicas geradas pela fase de controle.

4.5.1.4. Filtro EMC de entrada

Os dispositivos ao redor do inversor podem sofrer distúrbios causados pelos cabos quando o inversor está em funcionamento. O filtro EMC pode diminuir a interferência. Exatamente como na figura a seguir.

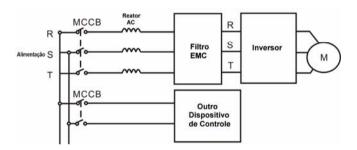


Figura 4.13 Ligação no circuito principal do inversor

(b) 4.5.2 Ligação no circuito principal do inversor

4.5.2.1 Reator DC

Inversores de 18,5kW até 90kW são construídos com reator DC no qual pode diminuir o fator de potência.

4.5.2.2 Unidade de frenagem e resistor de frenagem

 Inversores de 15KW e abaixo são construído com unidade de frenagem.Para dissipar a potência regenerativa gerada pela dinâmica de frenagem, o resistor de frenagem deve ser instalado nos terminais (+) e PB. O cabo do resistor de frenagem deve ser menor que 5m.

- Inversores de 18.5kW e acima necessitam conectar unidade de freio externo no qual deve-se instalar nos terminais (+) e (-). O cabo entre o inversor e a unidade de freio deve ser menor que 5m. O cabo entre a unidade de freio e o resistor de frenagem deve ser menor que 10m.
- A temperatura do resistor de frenagem alimentará por que a energia regenerativa será transformada em calor. Proteção de segurança e uma ventilação adequada são recomendadas.

OBSERVAÇÃO

Certifique-se que as polaridades dos terminais estão corretas Não é permitido fazer um jumper entre os terminais (+) e (-), caso contrário o inversor pode danificar ou ocorrer incêndio.

(c) 4.5.3 Ligação do motor no circuito principal

4.5.3.1 Reator de saída

Quando à distância entre o inversor e o motor é maior que 50m, o inversor pode detectar uma falha de sobre corrente inexistente causado por uma grande fuga de corrente resultado por uma capacitância parasítica em relação ao terra. Ao mesmo tempo pode impedir que a isolação do motor seja danificada, neste caso o reator de saída deve ser instalado.

4.5.3.2 Filtro EMC de saída

O filtro EMC deve ser instalado para minimizar a fuga de corrente causado pelos cabos e minimiza o ruído causado pelo cabo, entre o inversor e o cabo. Observe na figura a seguir:

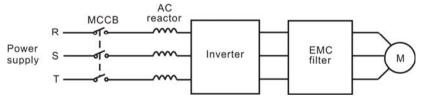


Figura 4.14 Ligação do motor no circuito principal

4.5.4 Ligação da unidade regenerativa

Unidade regenerativa é usada para transferir a energia gerada pelo freio do motor para a rede. Comparado com a tradicional ponte inversa paralela trifásica tipo unidade retificadora, unidade regenerativa usa IGBT com a finalidade de reduzir a distorção harmônica total (THD) abaixo 4%.

Unidade regenerativa é utilizada em larga escala em equipamentos centrífugos e de içamento.

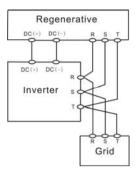


Figura 4.15 Ligação da unidade regenerativa

4.5.5 Ligação comum do barramento DC

O método do barramento DC comum é amplamente utilizado nas indústrias de papel e fibras químicas, as quais precisam de vários motores para coordenar. Nestas aplicações, alguns motores se encontram em estado de funcionamento, ao passo que outros se encontram em estado de frenagem (gerando eletricidade). regenerativa Α energia regenerada automaticamente balanceada através do barramento DC comum. significando que ela pode alimentar os motores em estado de funcionamento. Portanto o consumo de potência de todo sistema será menor do que se comparado com o método tradicional (um inversor controla um motor).

Quando dois motores estão funcionando ao mesmo tempo (ex: sistemas de ventilação) um está em funcionamento enquanto o outro está em estado regenerativo. Neste caso os barramentos DC destes dois inversores podem estar em paralelo assim a energia regenerada pode alimentar os motores em funcionamento quando necessário. A instalação detalhada é mostrada na figura abaixo:

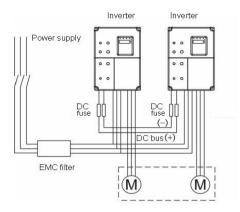


Figura 4.16 Ligação comum do barramento DC

OBSERVAÇÃO:

Dois inversores devem ser do mesmo modelo quando conectados com o método de barramento DC comum. Certifique-se de que eles são ligados ao mesmo tempo.

4.5.6 Ligação do Terra (PE)

Para garantir segurança e evitar choque elétrico ou incêndio, PE deve ser aterrado com resistência terra. O fio terra deverá ter uma bitola adequada e não deve ser muito extenso, é melhor utilizar fio de cobre (> 3,5mm ao quadrado). Quando múltiplos inversores precisarem ser aterrados, não poderão ser aterrado em uma mesma malha de aterramento.

4.6 Ligação do circuito de Controle

4.6.1 Precauções

- Para conectar os terminais de controle Utilize cabo blindado ou par-trançado.
- Conecte o terminal terra (PE) com cabo blindado
- O cabo conectado ao terminal de controle não deve estar próximo do circuito principal e circuitos de altas correntes (incluindo cabo de alimentação, cabo do motor, relé e cabo de conexão de contatores). Ele deve estar distante no mínimo 20cm e deve ser evitada ligação paralela.

Sugerimos que seja feita uma ligação perpendicular para prevenir o mau funcionamento do inversor causado por interferências externas.

4.6.2 Terminais do circuito de controle.

N° do Terminal	Função
S1~S4	ON-OFF sinal de entrada, óptico acoplador com PW e COM. Range de tensão de entrada: 9 \sim 30 V Impedância de entrada: 3,3 k Ω
+24V	Permite saída de alimentação de + 24V Corrente máxima de saída: 150mA
Al1	Entrada analógica: 0 ~ 10V Impedância de entrada: 10 kΩ
Al2	Entrada analógica: $0 \sim 10V/0 \sim 20$ mA, configurado pelo J16 Impedância de entrada: 10 k Ω (tensão de entrada) / 250ohms (corrente de entrada)
GND	Terminal de aterramento comum do sinal analógico e +10V. GND deve ser isolado do COM.
+10V	Fornece +10V para inversor
СОМ	Terminal terra comum para sinal digital e +24V (ou fonte de alimentação externa)
AO	Fornece tensão ou corrente de saída que pode ser configurado pelo J15 Range de Saída: 0 ~ 10V/ 0 ~ 20mA
Y	O terminal comum de aterramento da saída do coletor aberto é o terminal COM
ROA□ROB□ROC	Relê de saída: ROA comum; ROB NC; ROC – NO. Capacidade de contato: AC 250V/3 A, DC 30V / 1 A.

4.6.3 Jumpers do circuito de controle

Jumper	Function
J2, J4	Configuração Padrão: J2 e J4 são desconectados. É proibido estar conectados juntos, caso contrário causará um mau funcionamento do inversor.
J7	Configuração Padrão: 2 e 3 conectados. Não mude a configuração padrão, caso contrario causará um mau funcionamento de comunicação.
J16	Seleção entre (0 ~ 10 V) tensão de entrada e (0 ~ 20 mA) corrente de entrada. V conecta ao GND (pino central do J16) I conecta ao GND (pino central do J16)
J15	Seleção entre (0 ~ 10V) tensão de saída e (0 ~ 20 mA) corrente de saída. V conecta ao OUT (pino central do J15) I conecta ao OUT (pino central do J15)

4.6.4 Configuração da entrada analógica Al2 (1AC 0.4~0.75kW)

Al 2 Pode de ser configurado em 3 modos (0 \sim 24V/ 0 \sim 10V/ 0 \sim 20mA). De acordo com a configuração do J16.

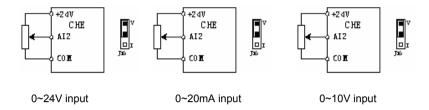


Figura 4.17 Configuração da entrada analógica AI2 (0.4~0.75kW 1AC)

Para o potenciômetro externo, a resistência deve ser maior que 3 k Ω e a potência deve ser maior que 1/4W. É recomendado que o potenciômetro seja de 5 ~ 10 k Ω .

OBSERVAÇÃO:

O terminal usará o circuito interno para ajustar o sinal de entrada. As duas primeiras configurações possuem variação de tensão interna relativa de 0 ~ 10V. A terceira configuração possui range de tensão interna relativa de 0 ~ 5V.

4.7 Guia de instalação do filtro EMC

4.7.1 Descrição geral do EMC

EMC é a abreviação de "Elctromagnetic compatibility", o que significa que os dispositivos ou sistemas podem funcionar normalmente em ambiente eletromagnético e não irá gerar qualquer interferência eletromagnética a outros equipamentos.

Existem dois tipos de EMC: interferência eletromagnética e anti-jamming eletromagnético.

De acordo com o modo de transmissão, a interferência eletromagnética pode ser dividida em 2 categorias: interferência conduzida e interferência radiada.

A interferência conduzida é a interferência transmitida pelo condutor. Sendo assim, quaisquer condutores (tais como fiação, linha de transmissão, indutor, condutor, etc.) são os canais de transmissão de interferência.

Interferência radiada é a interferência transmitida em onda eletromagnética, e a energia é inversamente proporcional ao quadrado da distância.

Três condições necessárias ou essenciais para interferência eletromagnética são: fonte de interferência, canal de transmissão e receptor sensível. Para usuários, a solução do problema EMC é principalmente o canal de transmissão.

4.7.2 Especificações do filtro EMC do inversor

Como qualquer outro dispositivo eletrônico ou elétrico o inversor não é apenas uma fonte geradora de interferência eletromagnética, mas é também um receptor eletromagnético. A principal operação do inversor determina que ele pode produzir certos ruídos ou interferências eletromagnéticas. E ao mesmo tempo o inversor deve ser desenvolvido com habilidade anti-atolamento(antijamming) para garantir seu funcionamento perfeito em ambientes eletromagnéticos. Segue abaixo as características do EMC:

- 4.7.2.1 Corrente de entrada sem sinal de onda. A entrada de corrente possui uma grande quantidade de ondas com alta amplitude que podem causar interferência eletromagnética, diminuir o fator de potência e aumentar as perdas na linha de trabalho.
- 4.7.2.2 Tensão de saída de alta freqüência em ondas (PWM), o que pode aumentar a temperatura e diminuir a vida útil do motor. E a fuga de corrente também será aumentada, o que pode encadear o mau funcionamento do dispositivo de proteção de vazão e gerar uma forte interferência eletromagnética que influenciará na confiabilidade de outros dispositivos elétricos
- 4.7.2.3 Sendo ele um receptor eletromagnético, uma forte interferência danificará o inversor e irá interferir no uso normal dos usuários.
- 4.7.2.4 No sistema, EMS e EMI o inversor coexiste. A diminuição do EMI do inversor pode aumentar a funcionabilidade do EMS.

4.7.3 Instalação do EMC

Para certificar-se que todos os dispositivos do mesmo sistema estão funcionando corretamente, esta sessão, baseada nas características do EMC do inversor, apresenta o processo de instalação em diversos aspectos de aplicação (controle de ruídos, fiação local, aterramento,fuga de corrente, filtro de alimentação). A eficiência do EMC vai depender dos cinco aspectos.

4.7.3.1 Controle de Ruído

Todas as conexões nos terminais de controle devem ser feitas com cabo blindado. A malha de aterramento do cabo deve estar próxima a fiação de entrada do inversor. O modo de conexão do aterramento é de 360 graus angular a conexão formada pelo chicote de cabos.

É estritamente proibido conectar cabo de par trançado junto à camada do terra do inversor , o que diminui drasticamente ou perde o efeito da blindagem.

Conecte o inversor e motor ao cabo blindado ou em bandejas separadas. Um lado da camada blindado do cabo blindado ou a tampa de metal do

bandejamento deve ser conectado ao terra , e o outro lado deve ser conectado a tampa do motor. A instalação do filtro EMC pode reduzir consideravelmente o ruído eletromagnético.

4.7.3.2 Fiação local

Fiação da alimentação: a potência deve ser fornecida isolada do transformador elétrico. Normalmente são de 5 vias , as quais três vias são fases (R,S,T) , uma via é o neutro , e a outra é o fio terra. É estritamente proibido usar a mesma linha para ser ambos fio neutro e fio terra.

Classificando dispositivo: Existem dispositivos elétricos diferentes, contidos em único painel de controle, tais como o inversor, filtro, CLP e instrumentos etc, os quais tem diferentes capacidades de emitir e reter ruídos eletromagnéticos.

Portanto é necessário classificar estes dispositivos em dispositivo que gera um ruído muito forte e dispositivo sensíveis a ruído. Os mesmos tipos de dispositivos devem estar localizados na mesma área, e a distância entre dispositivos de categorias diferentes deve ser maior do que 20cm.

Arranjo interno da fiação no interior do painel de controle: há cabo de sinal (baixa corrente) e cabo de potência (alta corrente) em um mesmo painel. Para o inversor, os cabos de potência são classificados em cabo de entrada e cabo de saída. Os cabos de sinal podem facilmente sofrer interferência do cabo de potencia ocasionando mau funcionamento do equipamento. Portanto quando instalados, os cabos de sinal e os cabos de potência eles devem ser acomodados em áreas distintas. É estritamente proibido arranjá-los em paralelo ou entrelaça-los (distancia mínima 20cm) ou fixa-los juntos. Se os cabos de sinal tiverem que cruzar os cabos de potência devem ser posicionados em ângulos de 90graus. Tanto potência de entrada e cabo de saída não devem ser entrelaçados ou fixados juntos, especialmente quando o filtro EMC for instalado. Caso contrário a capacitância distribuída dos cabos de potência de entrada e saída podem misturar-se um ao outro impedindo o funcionamento do filtro EMC.

4.7.3.3 Aterramento:

O inversor deve estar aterrado com segurança quando estiver em funcionamento. Aterramento é uma das prioridades dentre todos os métodos EMC (electricmagnetic compatibility) por que não somente garante a segurança do equipamento e das pessoas como também é a solução mais simples, eficiente e de baixo custo para problemas com o EMC.

Existem três categorias de aterramento: aterramento de pólo especial, aterramento de pólo comum, aterramento series-wound. Diferentes sistemas de controle devem usar aterramento de pólo especial, dispositivos diferentes no mesmo sistema de controle deve usar aterramento de pólo comum, e dispositivos conectados pelo mesmo cabo de potência deve usar aterramento series wound.

4.7.3.4 Vazão de corrente

A vazão de corrente pode ser vazão line-to-line e vazão de corrente over-ground. Seu valor depende na capacitância distribuída e a freqüência portadora do inversor. A vazão de corrente over-ground, que é a corrente que passa pelo cabo de aterramento comum, pode não somente vazar pelo sistema do inversor como também para os dispositivos. Também pode causar vazão na corrente do circuito de frenagem, mau funcionamento do relé e outros dispositivos. O valor de vazão da corrente line-to-line, que é a corrente de vazão que passa pelos capacitores na fiação de entrada e saída, depende da freqüência portadora do inversor, da largura e área da bitola dos cabos do motor. Quanto maior a freqüência portadora do inversor, maior o cabo do motor e/ou maior a área da bitola dos cabos, maior será a vazão de corrente.

Contagem de medida (countermeasure):

Diminuindo a freqüência portadora pode diminuir a vazão da corrente consideravelmente. No caso do cabo do motor ser relativamente longo (maior que 50m), é necessário instalar reator AC ou filtro de onda senoidal na saída, e quando for ainda maior, é necessário instalar um reator a cada distância específica.

4.7.3.5 Filtro EMC

O filtro EMC tem grande efeito de desacoplamento eletromagnético, então é preferível que o usuário instale.

Para inversor, o filtro de ruído tem as seguintes características:

- Filtro de ruído instalado na entrada do inversor.
- Instalar isolação de ruído para outros equipamentos através do transformador de isolamento ou filtro de potência.

5. OPERAÇÃO

5.1 Descrição da IHM

5.1.1 Diagrama esquemático da IHM

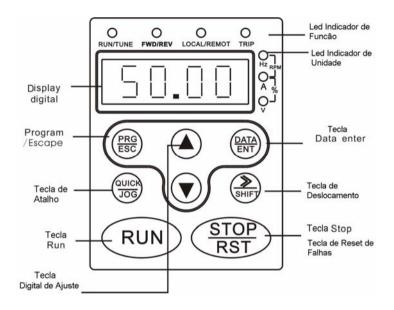


Figura 5.1 Diagrama esquemático da IHM.

5.1.2 Descrição de funções das teclas

Símbolo Tecla	Nome	Descrição da Função
	Tecla de programação	Entrada ou saída do 1º nível do menu
	Tecla Enter	Entrada progressiva do menu e confirmação de parâmetros
	Tecla de incremento	Aumenta a informação ou códigos de função
V	Tecla de decre atr G	Diminui a informação ou códigos de função
	Tecla de combinação.	Exposições cíclicas dos parâmetros pela tecla leftshift. Em estado de funcionamento ou parado. Observe que quando em operação, deve-se primeiramente pressionar e segurar a tecla DATA/ENT e então pressione a tecla QUICK/JOG.
	Tecla Shift	No parâmetro de modo de configuração, pressione esta tecla para selecionar o bit a ser modificado. Em outros modos, o display exibe ciclicamente os parâmetros de deslocamento direito.
	Tecla Run	Partida do inversor em modo de controle pela IHM
	Tecla STOP/RESET	Em funcionamento, restringido por P7. 04, podendo ser usado com inversor em Stop. Quando houver alarme de falha, o inversor pode ser resetado sem qualquer restrição.
	Tecla de Atalho Multifu ntal	Código da função determinada pelo P7.03: 0: Operação Jog 1: Chaveamento entre sentido horário e anti-horário 2: Zera configurações de UP/DOWN 3: Modo 1 de debugging rápido (pelo menu) 4: Modo 2 de debugging rápido (pelo último comando) 5: Modo 3 de debugging (pelos parâmetros de configuração de fábrica)
	Combile	Pressionando RUN e STOP/REST ao mesmo tempo para parada instantânea.(coast to stop)

5.1.3 Descrição de Leds indicadores

5.1.3.1 Descrição de funções dos leds indicadores

Nome do Led indicador	Descrição de Leds indicadores
RUN/TUNE	Apagado: Parado (Stop status) Piscando: estado de auto-ajuste de parâmetros
	Aceso: estado de operação
באים/חבע	Artigo II. Apagado: Sentido horário de operação
FWD/REV	Aceso: Sentido anti-horário de operação
LOCAL/REMOT	Apagado: controle pela IHM Piscando: Terminal de controle
	Aceso: controle de comunicação
TDID	Apagado: estado normal de operação
IKIP	Piscando: sobrecarregado (estado de atenção)

5.1.3.2 Descrição do led indicador de unidade

Símbolo	Descrição
Hz	Unidade de Freqüência
Α	Unidade de Corrente
V	Unidade de Tensão
RPM	Unidade de Rotação (Velocidade)
%	Porcentagem

5.1.3.3 IHM Digital

Há 5 combinações nos leds indicadores de unidade, os quais contem todos os tipos de informações que podem ser monitoradas e códigos de alarme tais como referencia de freqüência e freqüência de saída, etc.

Artigo III. 5.2 - Processo de Operação

5.2.1 -Parâmetros de configuração

Os três níveis do menu são:

- Grupo de código de função (primeiro nível)
- Código de função (segundo nível)
- Valor do código de função (terceiro nível)

COMENTÁRIO:

Pressionando ambos PRG/ESC e o DATA/ENT o usuário pode retornar para segundo nível do menu e terceiro nível do menu. A diferença é: pressionando PRG/ESC você salva os parâmetros programados no painel de controle, e então retorna para o segundo nível do menu mudando para o próximo código de função automaticamente; enquanto se o usuário pressionar direto DATA/ENT retornará

diretamente para o menu sem salvar os parâmetros, e ainda permanece no mesmo código de função.

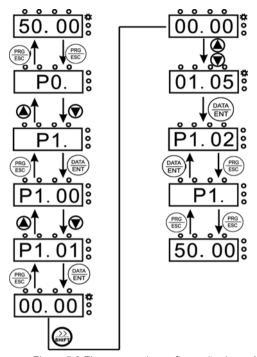


Figura 5.2 Fluxograma de configuração de parâmetros

Abaixo do terceiro nível se o parâmetro não tem bit piscando, isso quer dizer que o código de função não pode ser modificado. As razões possíveis podem ser:

- Esse código de função não pode ser modificado enquanto o aparelho estiver ligado.
- Esse código de função não pode ser modificado em estado de funcionamento, mas modificado em estado de parada.

5.2.2 Reset de falhas:

Se o inversor falhar, ele irá instantaneamente enviar informação de falha. O usuário pode usar a tecla STOP/RST ou os terminais que são determinados pelo grupo P5 para cancelar a falha. Depois de cancelada, o inversor se encontrará em estado de stand-by. Se o usuário não cancelar a falha do inversor quando ele

estiver em estado de falha, ele se encontrará em estado de proteção de operação, e não funcionará.

5.2.3 Parâmetros de auto-ajuste do motor:

Se o modo de "controle vetorial sensorless (SVC)" for escolhido, a descrição do motor e suas características devem ser introduzidas corretamente, pois o auto ajuste é baseado em tais informações. A performance do sistema de controle vetorial depende fortemente das características do motor, então para obter uma excelente performance, primeiramente devemos obter todas as características e informações do motor com exatidão.

O procedimento de parametrização do auto ajuste do motor (autotuning) é conforme descrito abaixo:

Primeiramente, escolher o canal de comando da IHM como o canal de operação; (P0. 01).

Então, deve-se parametrizar os seguintes parâmetros de acordo com as características do motor utilizado:

P2.00: potência do motor

P2.01: freqüência do motor

P2.02: velocidade do motor

P2.03: tensão do motor

P2.04: corrente do motor

Nota: O motor deve estar desacoplado de sua carga; caso contrário, os parâmetros do motor obtidos pelo auto ajuste (autotuning) podem não estar corretos.

Ajuste P0. 12 para 1, e para detalhar o processo de parametrização do auto ajuste do motor (autotuning), por favor, consulte a descrição do código de função P0. 12. Em seguida pressione RUN na IHM, e o inversor calculará automaticamente os seguintes parâmetros do motor:

P2.05: resistência do estator do motor

P2.06: resistência do rotor do motor

P2.07: indutância do estator e rotor do motor

P2.08: indutância mútua do estator e rotor do motor

P2.09: corrente do motor sem carga;

Assim, o auto ajuste do motor estará finalizado.

5.2.4 Configuração de password (Senha)

A série de inversor CHE oferece aos seus usuários uma função de senha de proteção. Quando P7.00 é ajustado diferentemente de zero, este será o password (senha) do usuário, e após sair do modo de edição do código de função, ele entrará em vigor em 1 minuto. Se pressionar PRG/ESC novamente para tentar acessar o

modo de edição do código de função, aparecerá na IHM "0.0.0.0.0", e o operador deverá entrar com a senha correta, caso contrário o acesso não será permitido.

Se necessário cancelar a função de senha de proteção, ajuste P7.00 para 0.

5.3 Estado de funcionamento

5.3.1 Energização

Primeiramente o sistema deve ser inicializado durante a energização do inversor, e o display da IHM mostrar "CHE". Depois que a inicialização estiver completa o inversor estará em estado de stand by.

5.3.2 Standby

Em estado de funcionamento ou parado, os parâmetros de multi estados aparecerão no display. Sendo ou não mostrado o parâmetro ele poderá ser escolhido através do código de função P7. 06 (seleção do display da IHM em estado de funcionamento) e P7.07 (seleção do display da IHM em estado parado /stop) de acordo com os bits. Para obter a descrição detalhada de cada bit, por favor, consulte a descrição do código de função P7. 06 e P7. 07.

Em estado parado, existem nove parâmetros que podem ser escolhidos para aparecer no display da IHM ou não. São eles: referência de freqüência, tensão do barramento DC, estado de entrada ON-OFF, estado de saída de coletor aberto, configuração PID, realimentação PID (feedback), tensão de entrada analógica AI1, tensão de entrada analógica AI2, números de estágios de função multi-speed. Sendo ou não mostrado, pode ser decidido pela configuração dos bits P7. 07 correspondentes. Pressione /SHIFT para navegar pelos parâmetros no sentido da direita. Pressione DATA/ENT + QUICK/JOG para navegar pelos parâmetros no sentido da esquerda.

5.3.3 Parâmetros de auto ajuste do motor (autotuning)

Para detalhes, por favor, consulte a descrição do P0. 12.

5.3.4 Operação

Em estado de funcionamento, existem 14 parâmetros de funcionamento:

Freqüência de saída, referencia de freqüência, tensão do barramento DC, tensão de Saída, Corrente de saída, Potência de saída, torque de Saída, configuração PID, realimentação de PID (feedback), estado on-off, estado de saída do coletor aberto, valor do comprimento, valor de contagem ,Números de passos do CLP e velocidade multi-speed,Tensão de entrada analógica A1, tensão de entrada analógica A2 e numero de estágios de velocidade multi-speed. Sendo ou não

mostrado pode ser decidido pela opção do código de função P7. 06 (convertido em sistema binário). Pressione I/SHIFT para navegar pelos parâmetros no sentido da direita. Pressione DATA/ENT + QUICK/JOG para navegar pelos parâmetros no sentido da esquerda.

Artigo IV. 5.3.5 Falha

Artigo V. A série de inversores CHE oferece uma variedade de informações de falha.

Para detalhes, veja falhas do inversor em seu guia de falhas

5.4 Teste rápido

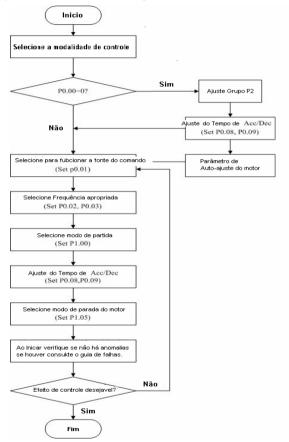


Figura 5.3 Teste rápido do diagrama

6. DESCRIÇÃO DETALHADA DAS FUNÇÕES

Seção 5.01 6.1 P0 Grupo de funções básicas

Código da função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P0.00	Seleção modo de controle	0: controle vetorial Sensorless 1: controle V/F 2: controle por torque	0~2	0

- 0: <u>Controle vetorial sensorless</u>: é amplamente usado para a aplicação que requer alto torque em baixa rotação, precisão em alta velocidade e resposta dinâmica mais rápida, tais como: máquinas de injeção de moldes, maquinas centrifugas, extrusoras etc.
- 1: <u>Controle V/F</u>: é configurável de acordo com propósito geral da aplicação tais como bombas, ventiladores etc.
- 2: <u>Controle por torque</u>: é configurável para aplicações com baixa precisão no controle de torque, tais como extrusoras. No modo de controle por torque, a velocidade do motor é determinada pela carga, a escala de aceleração e desaceleração não tem relação com o valor do parâmetro P0. 08 e P0. 09 (ou P8. 00 e P8. 01).

NOTA:

- O inversor só poderá controlar um motor quando P0. 00 estiver configurado entre 0 ou 2.Quando P0.00 é configurado 1 o inversor poderá controlar multi-motores.
- O auto ajuste dos parâmetros do motor deve ter um bom desempenho quando P0. 00 é configurado entre 0 ou 2.
- Para atingir melhores características de controle, os parâmetros reguladores de velocidade (P3. 00 até P3. 05) deverá ser ajustado de acordo com a situação atual quando P0. 00 é configurado entre 0 ou 2.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P0.01	Fonte do comando de partida	0: IHM (led apagado) 1:Terminal (led piscando) 2:Comunicação (led aceso)	0~2	0

A operação, funcionamento em sentido horário, e sentido anti-horário, jog no sentido horário e jog no sentido anti-horário, pode ser controlada pelos terminais de entrada multifuncionais.

2: Comunicação (LED aceso)

A operação do inversor pode ser controlada pelo host através de comunicação.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P0.02	UP/DOWN (Configuração)	0: Válido, salva o valor de UP/DOWN quando desligado 1: Válido, não salva o valor de UP/DOWN quando desligado 2: Inválido 3: Válido durante funcionamento, limpa quando para.	0~3	0

- 0: Usuário pode ajustar a referência de freqüência pelo UP/DOWN. O valor de UP/DOWN pode ser salvo quando o equipamento for desligado.
- 1: Usuário pode ajustar a referência de freqüência pelo UP/DOWN, mas o valor de UP/DOWN não será salvo quando o equipamento for desligado.
- 2: Usuário não pode ajustar a referência de freqüência pelo UP/DOWN. O valor de UP/DOWN será zerado se P3.05 estiver ajustado em 2.
- 3: O usuário só ajustará a referência de freqüência pelo UP/DOWN durante o funcionamento do inversor. O valor de UP/DOWN será zerado quando o inversor estiver em estado parado.

NOTA:

- A função UP/DOWN pode ser acionada pelas teclas (e) e terminais multifuncional.
- Referência de frequência pode ser ajustada pelas teclas UP/DOWN
- UP/DOWN tem prioridade máxima o que significa que está sempre ativa não importa qual comando de freqüência está sendo usada.
- Quando a configuração de fábrica is restaurada (P1. 03 está ajustado em 1), o valor de UP/DOWN será cancelado.

Código da função	Nome	Descrição	Configuração do Range	Configuração de Fabrica
P0.03	Comando da freqüência A	0: IHM 1: Al 1 2: Al 2 3: Al 1 + Al 2 4: Multi estágios de velocidade (multi-speed) 5: PID 6: Comunicação	0~6	0

0: IHM. Por favor, consulte a descrição do P3. 00

1: Al 1 (entrada analógica 1)

2: Al 2 (entrada analógica 2)

3: Al 1 + Al 2

A referência de freqüência deve ser ajustada pela entrada analógica. Os inversores da série CHE possuem 2 entradas analógicas. Al 1 é de 0 ~10 V de tensão no terminal de entrada, enquanto Al 2 é de 0 ~10 V de tensão na entrada ou 0 ~20 mA de corrente na entrada. A tensão de entrada ou a corrente de entrada de Al 2 pode ser selecionada pelo Jumper 16(J 16)

NOTA:

- Quando Al 2 é selecionado como 0 ~20 mA de corrente de entrada, o range de tensão correspondente será de 0 ~ 5 V, para detalhes sobre relação entre a tensão de entrada analógica e freqüência, por favor consulte a descrição de P0.07 ~ P5.11.
- 100% da entrada está relacionada à fregüência máxima.
- 4: Multi-speed

A referência de freqüência é determinada pelo grupo PA a seleção dos estágios é determinado pela combinação dos terminais multi-speed.

NOTA.

- O modo multi-speed terá prioridade quando estiver configurando a referência de freqüência se P0. 03 não estiver ajustado em 4. Neste caso somente os estágios de 1 ~15 estarão disponíveis.
- Se P0.03 estiver ajustado para 4, estágios de 0 ~15 estarão disponibilizados. JOG terá mais alta prioridade.

5: PID:

A referência de freqüência é o resultado de ajuste do PID. Para detalhes favor consultar a descrição do grupo P 9.

6: Comunicação

A referência de freqüência deve ser ajustada através da RS 485. Para detalhes, favor consultar a descrição do capítulo 10.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fabrica
P0.04	Freqüência Máxima	P0.05~600.00Hz	P0.05~600.00	50.00Hz

NOTA:

- A referência de freqüência não deve exceder a freqüência máxima.
- O tempo de aceleração atual e o tempo de desaceleração serão determinados pela freqüência máxima. Por favor, consulte a descrição de P0.08 e P0.09.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P0.05	Freqüência acima do limite	P0.06~ P0.04	P0.06~P0.04	50.00Hz

NOTA:

- Frequência acima do limite não deve ser maior que a frequência máxima.(P0. 04).
- Frequência de saída não deve exceder a frequência acima do limite.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P0.06	Freqüência abaixo do limite	0.00 Hz ~ P0.05	0.00~P0.05	0.00Hz

NOTA:

- Frequência abaixo do limite não deve ser maior que a frequência limite (P0.
 05).
- Se a referência de frequência é menor que P0.06, a ação do inversor é determinada pelo P1.12. Por favor, consulte a descrição de P1. 12.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P0.07	Referencia de Freqüência - IHM	0.00 Hz ~ P0.04	0.00~P0.04	50.00Hz

Quando P0. 03 estiver ajustado em 0, o parâmetro é o valor inicial de referência de freqüência do inversor.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P0.08	Tempo de Aceleração 0	0.0~3600.0s	0.0~3600.0	Depende do Modelo
P0.09	Tempo de Desaceleração 0	0.0~3600.0s	0.0~3600.0	Depende do Modelo

Tempo de aceleração é o tempo de aceleração de 0Hz até a freqüência máxima (P0. 04).

Tempo de desaceleração é o tempo de desaceleração da freqüência máxima (P0. 04) até 0 Hz.Por favor, consulte a figura a seguir:

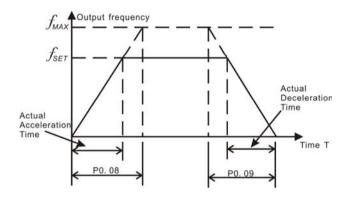


Figura 6.1 Tempo de aceleração e desaceleração.

Quando a referência de freqüência é igual à freqüência máxima, o tempo de aceleração de desaceleração atual será igual a P0. 08 e P0. 09 respectivamente Quando a referência de freqüência é menor que à freqüência máxima, o tempo de

aceleração de desaceleração atual será menor a P0. 08 e P0. 09 respectivamente.

O tempo atual de aceleração (desaceleração) = P0. 08 (P0. 09) * referência de freqüência /P0. 04.

A série CHE de inversores possui dois grupos de tempo de aceleração e desaceleração.

1° Grupo P0.07, P0.08

2º Grupo P8.00, P8.01

O tempo de aceleração e desaceleração pode ser selecionado pela combinação de terminais mult-funcionais on-off determinados pelo grupo P5. A configuração de fábrica do tempo de aceleração e desaceleração é conforme segue abaixo:

5.5 kW e abaixo: 10.0s
7.5KW até 30KW: 20.0s
37KW e acima: 40.0s

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P0.10	Seleção de direção de Funcionamento	0: sentido horário 1: sentido anti-horário 2: reversão proibida	0~2	0

Nota:

- A direção de rotação do motor é correspondente a fiação do motor
- Quando a configuração de é restaurada (P0.13 é ajustado em 1), a direção de rotação do motor pode ser mudada. Por favor, tenha cuidado ao usar. Se P0. 10 for ajustado em 2, o usuário não poderá mudar a direção de rotação do motor pelo QUICK/JOG ou via terminal.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fabrica
P0.11	Freqüência Portadora	0.5~15.0kHz	0.5~15.0	Depende do modelo

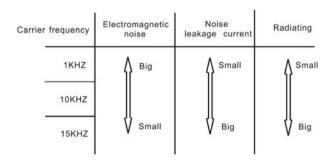


Figura 6.2 Efeito da Freqüência portadora

A tabela seguinte é a relação entre a escala de potência e freguência portadora:

Portadora f Modelo	Freqüência portadora máxima f (kHz)	Freqüência portadora mínima f (kHz)	Configuração de Fábrica (kHz)
Modelo G: 0.4 kW ~11 kW	15	1	8
Modelo P: 0.75kW ~15kW	10	'	0
Modelo G: 15kW ~55kW		4	4
Modelo P: 18.5kW ~75 kW	8	1	4
Modelo G: 75 kW ~300kW		4	
Modelo P: 90kW ~315kW	6	1	2

A fregüência portadora afetará o ruído do motor e o EMI do inversor.

Se a freqüência portadora for aumentada, causará uma onda de corrente melhor, uma corrente harmônica menor e ruído mais baixo do motor.

NOTA:

- A configuração de fábrica é ideal na maioria dos casos. Não é recomendada a modificação dos parâmetros
- Se a freqüência portadora exceder a configuração de fábrica, o inversor será danificado, por que quanto maior a freqüência portadora será maior a perda do chaveamento, elevação de temperatura do inversor e uma interferência magnética maior.

Se a freqüência portadora for menor que a configuração de fábrica, é possível causar menos torque de saída do motor e maior corrente harmônica.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P0.12	Parâmetro de auto ajuste do motor	0: sem ação 1: auto ajuste de rotação 2: auto ajuste de estática	0~2	0

0: Sem ação: Auto ajuste proibido

1: Auto ajuste de rotação

- Não conecte qualquer carga ao motor quando estiver fazendo o auto ajuste para certificar-se que o motor se encontra em estado de estática.
- Introduza as características técnicas do motor (P2.01 ~P2.05) corretamente antes de executar o auto ajuste. Caso contrário os parâmetros detectados pelo auto ajuste serão incorretos; e influenciará o desempenho do inversor.
- Ajuste o tempo de aceleração e de desaceleração apropriados (P0.08 e P0.09) de acordo com a inércia do motor antes de executar o auto ajuste.

Caso contrário causará uma falha de sobre corrente e uma sobre tensão durante o auto aiuste.

- O processo é conforme descrito abaixo:
- A. Ajuste P0. 12 em 1 e pressione a tecla DATA/ENT, aparecerá na IHM "-TUN-" e piscará. Enquanto "-TUN-" estiver piscando, pressione a tecla PRG/ESC para sair do auto aiuste.
- B. Pressione a tecla RUN para iniciar o auto juste. Aparecerá na IHM "-TUN-0".
- C. Depois de alguns segundos o motor começará a funcionar. Aparecerá na IHM "-TUN-1" e "RUN/TUNE" piscará.
- D. Depois de alguns minutos, aparecerá na IHM "-END-". O que significa que o auto ajuste terminou e voltou para o estado de parado.
- E. Durante o auto-ajuste, pressione a tecla STOP/RST para parar o auto-ajuste.

Nota:

Somente a IHM pode controlar o auto-ajsute. P0. 12 será restaurado em 0 automaticamente quando o auto-ajuste for finalizado ou cancelado.

2: auto-aiuste estático:

- Se for difícil desacoplar a carga, é recomendado o auto-ajuste estático.
- O procedimento de operação é o mesmo procedimento do auto ajuste de rotação. Exceto o passo C

Nota:

A indutância mútua e corrente sem carga não serão detectados pelo auto-ajuste estático, se necessário o usuário pode introduzir valores configuráveis de acordo com a experiência.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P0.13	Parâmetros de restauração	0: sem ação 1: restaura Configuração de fabrica. 2: limpa histórico de falhas	0~2	0

^{0:} sem ação

- 1: restaura todos os parâmetros configurados de fábrica exceto grupo P2
- 2: limpa histórico de falhas.
- O código de função será restaurado para 0 automaticamente quando completar a operação de função.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P0.14	Função AVR	0: desabilitado 1: sempre desabilitado 2: desabilitado durante a desaceleração	0~2	1

A Função AVR (regulador automático de tensão) garante a estabilidade da corrente de saída do inversor independente das mudanças de tensão do barramento DC. Durante a desaceleração, se a função AVR é desabilitada, o tempo de desaceleração será curto, mas a corrente será grande. Se a função AVR é habilitada o tempo todo, o tempo desaceleração será longo, mas a corrente será pequena.

6.2 Grupo P1 - Controle de partida e parada

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P1.00	Modo de Partida	0: Partida direta 1: Frenagem DC e partida	0~1	0

^{0:} Partida direta: De partida no motor com a freqüência de partida determinada pelo P1 01

1: Frenagem e partida: primeiro o inversor libera corrente DC e depois liga o motor com a freqüência de partida. Por favor, consulte a descrição do P1. 03 e P1. 04. Seu uso é indicado para motores que tenha uma carga baixa de inércia e também sentido de rotação reverso.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P1.01	Freqüência de partida	0.00~10.00Hz	0.00~10.00	1.5Hz
P1.02	Tempo de espera para freqüência de partida	0.0~50.0s	0.0~50.0	0.0s

- Ajuste a freqüência de partida apropriadamente e obtenha um aumento no torque de partida.
- Se a referência de freqüência for menor que a freqüência de partida, o inversor estará em estado de stand-by. O led indicador do RUN/TUNE está aceso, e o inversor não tem saída.
- A frequência de partida poderia ser menor que a frequência limite (P0.06)
- P1.01 e P1.02 não tem efeito durante o chaveamento FWD/VER

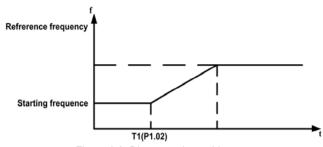


Figure 6.3 Diagrama de partida

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P1.03	Corrente de frenagem DC antes de iniciar	0.0~150.0%	0.0~150.0	0.0%
P1.04	Tempo de frenagem DC antes de iniciar	0.0~50.0s	0.0~50.0	0.0s

Quando o inversor inicia, ele opera primeiramente a frenagem DC de acordo com P1.03, e posteriormente começa a acelerar de acordo com P1.04.

NOTA:

- A frenagem DC só terá efeito somente se o P1.00 é ajustado em 1.
- A frenagem DC é inválida quando P1.04 é ajustado em 0.
- O valor de P1.03 é a porcentagem da escala de corrente do inversor. Quanto maior a corrente de frenagem DC, maior a frenagem de torque.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P1.05	Modo de parada	0:Desaceleração para parar 1: Parada por inércia	0~1	0

0:Desaceleração para parar

Quando comando para parar é usado, o inversor minimiza a saída de freqüência de acordo com o tempo de aceleração/desaceleração selecionado até parar.

1: Parada por Inércia

Quando o comando para parar é usado, o inversor bloqueia a saída imediatamente. A parada do motor é pela inércia mecânica.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P1.06	Freqüência de partida da frenagem DC	0.00~P0.04	0.00~50.00	0.00Hz
P1.07	Tempo de espera antes da Frenagem DC	0.0~50.0s	0.0~50.0	0.0s
P1.08	Corrente de Frenagem DC	0.0~150.0%	0.0~150.0	0.0%
P1.09	Tempo de Frenagem DC	0.0~50.0s	0.0~50.0	0.0s

<u>Freqüência de partida da frenagem DC:</u> A frenagem DC inicia quando a freqüência de saída atinge a freqüência de partida determinada pelo P1. 06.

<u>Tempo de espera antes da Frenagem DC:</u> O inversor bloqueia a saída antes de iniciar a frenagem DC. Depois deste momento, inicia-se a frenagem DC. É comum prevenir falha de sobre corrente causada pela frenagem DC de alta velocidade.

<u>Corrente de Frenagem DC:</u> O valor do P1.08 é a porcentagem da escala da corrente do inversor. Quanto maior a corrente de frenagem DC, maior a frenagem de torque.

<u>Tempo de Frenagem DC:</u> É tempo usado para realizar a frenagem DC. Se o tempo for 0 , a frenagem será invalida.

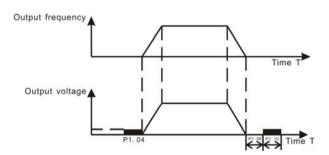


Figura 6.4 - Diagrama de Frenagem DC

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P1.10	Tempo de Zona morta FWD/REV	0.0~3600.0s	0.0~3600.0	0.0s

Ajuste de tempo de espera entre transição de sentido de rotação. Isto é demonstrado na figura abaixo:

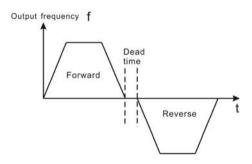


Figura 6.5 - Diagrama de zona morta FWD/VER

Código da função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P1.11	Habilita sentido de reversão FWD/REV.quando ligado	0:Desabilitado 1:habilitado	0~1	0

Nota:

- Esta função só tem efeito se a fonte do comando é o controle do terminal
- Se P1. 11 é ajustado em 0, quando ligado, o inversor não iniciará mesmo que o terminal FWD/REV esteja ativo, até que o terminal FWD/REV, seja desabilitado e habilitado novamente.
- Se P1. 11 é ajustado em 1, quando ligado e o terminal FWD/REV, estiver ativo o inversor iniciará automaticamente.
- Esta função pode fazer o inversor reiniciar automaticamente, por favor, tome cuidado.

6.3 P2 Grupo de parâmetros do motor

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P2.00	Opção G/P	0: modelo G 1: modelo P	0~1	0

- 0: Aplicável para carga de torque constante
- 1: Aplicável para carga de torque variável (por exemplo : ventiladores e bombas)

A série de inversores CHE possui a função integrada G/P. A potência do motor usada para carga de torque constante (modelo G) deve ser uma série menor do que a usada para carga de torque variável (modelo P)

Para mudar do modelo G para o modelo P. Siga as instruções abaixo.

- Ajuste P2. 00 em 1;
- Introduza os parâmetros do motor no grupo P2 novamente.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P2.01	Escala de potência do Motor	0.4~900.0kW	0.4~900.0	Depende do Modelo
P2.02	Escala de Freqüência do motor	0.01Hz~P0.04	0.01~P0.04	50.00Hz
P2.03	Escala de velocidade do motor	0~36000rpm	0~36000	Depende do Modelo
P2.04	Escala de tensão do motor	0~2000V	0~2000V	Depende do Modelo
P2.05	Escala de corrente do motor	0.8~2000.0A	0.8~2000.0	Depende do modelo

Nota:

- Para atingir um melhor desempenho, por favor, ajuste estes parâmetros de acordo com as características técnicas do motor, e então utilize o autoajuste.
- A escala de potência do inversor deve combinar com o motor utilizado. Se a polarização for muito ampla, o desempenho de controle do inversor será deteriorado distintamente. Reset P2.01 e ele incializará P2.02 ~ P2.10 automaticamente.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P2.06	Resistência do estator do	0.001~65.535Ω	0.001~65.535	Depende do modelo
P2.07	Resistência do Rotor do motor	0.001~65.535Ω	0.001~65.535	Depende do modelo
P2.08	Indutância da vazão do motor	0.1~6553.5mH	0.1~6553.5	Depende do modelo
P2.09	Indutância mutua do motor	0.1~6553.5mH	0.1~6553.5	Depende do modelo
P2.10	Corrente sem carga	0.01~655.35A	0.01~655.35	Depende do modelo

Depois do auto-ajsute o valor de P2. 06 ~ P2. 10 será atualizado automaticamente.

Nota:

Não mude estes parâmetros, caso contrário pode deteriorar o desempenho do controle do inversor.

6.4 - Grupo P3 - Controle Vetorial

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P3.00	Ganho proporcional K _p 1 ASR	0~100	0~100	20
P3.01	Tempo integral K _i 1 ASR	0.01~10.00s	0.01~10.00	0.50s
P3.02	Chaveamento no ponto 1 ASR	0.00Hz~P3.05	0.00~P3.05	5.00Hz
P3.03	Ganho proporcional K _p 2 ASR	0~100	0~100	25
P3.04	ASR Tempo Integral K _i 2 ASR	0.01~10.00s	0.01~10.00	1.00s
P3.05	Chaveamento no ponto 2 ASR	P3.02~P0.04	P3.02~P0.04	10.00Hz

P3. 00 ~ P3. 05 São válidos somente para controle vetorial e controle de torque e inválidos para controle V/F. Através do P3. 00 ~P3. 05, o usuário pode configurar o ganho KP proporcional e o tempo Ki integral do regulador de velocidade (ASR), para mudar as características de resposta de velocidade. A estrutura do ASR é mostrada abaixo.

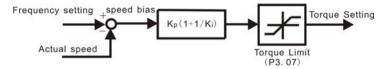


Figura 6.6 - Diagrama ASR.

P3.00 e P3.01 Só tem efeito quando a freqüência de saída é menor do que P3.02. P3.03 e P3.04 só tem efeito quando a freqüência de saída é maior do que P3.05. Quando a saída de freqüência está entre P3. 02 e P.05, Kp e Ki são proporcionais a polarização entre P3. 02 e P3.05. Para detalhes, por favor, consulte a figura seguinte.

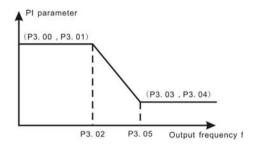


Figura 6.7 Diagrama do Parâmetro PI

A resposta dinâmica do sistema pode ser mais rápida se o ganho proporcional de KP é otimizado, entretanto, se Kp for muito grande o sistema se tornará instável.

A resposta dinâmica do sistema pode ser mais rápida se o tempo Ki integral for diminuído, entretanto, se Ki for muito pequeno o sistema começa a apresentar sobre sinal se tornará instável.

P3.00 e P3.01 São correspondentes a Kp e Ki em alta freqüência. Por favor, ajuste estes parâmetros de acordo com a situação atual. O procedimento de ajuste é descrito a seguir:

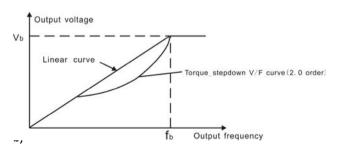
- Aumente o ganho proporcional (Kp) o máximo possível se gerar oscilação.
- Reduza o tempo integral (Ki) o máximo possível sem criar oscilação.

Para maiores detalhes, por favor, consulte a descrição do grupo P9.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P3. 06	Escala de compensação de escorregamento de VC	50.0~200.0%	50.0~200.0	100%

O parâmetro é usado para ajustar o escorregamento de freqüência do controle vetorial e aperfeiçoar a precisão do controle de velocidade. Ajustando apropriadamente o parâmetro de polarização (BIAS) restringirá a polaridade de velocidade estática.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P3.07	Limite de torque	0.0~200.0%	0.0~200.0	150.0%


Este parâmetro é usado para limitar a saída de corrente de torque pelo regulador de velocidade. O valor de limite de torque $0.0 \sim 200\%$ é o percentual da escala de corrente do inversor.

6.5 Grupo P4 - Controle V/F

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P4.00	Seleção de curva V/F	0:curva linear 1:curva de torque (curva de ordem 2)	0~1	0

- 0: É aplicável para uma carga de torque constante.
- 1: Torque de ordem 2. É aplicável para carga de torque variável, como sopradores, bombas entre outros.

Por favor, consulte a figura a seguir:

c) Figura 6.8 - Diagrama de curva V/F

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P4.01	Otimização do torque	0.0%: (auto) 0.1□~10.0□	0.0~10.0	0.0□
P4.02	Interrupção da otimização do torque	0.0%~50.0% (motor rated frequency)	0.0~50.0	20.0%

A otimização de torque deverá ter efeito quando a freqüência de saída é menor que a interrupção da otimização do torque (P4.02). A otimização do torque pode melhorar o desempenho do controle V/F em baixa velocidade.

O valor de otimização de torque deverá ser determinado pela carga. Quanto maior for a carga, maior será o valor.

NOTA: P4.01 não deve ser muito grande, caso contrário o motor sobre aquecerá, ou o inversor sofrerá dano de sobre corrente ou sobre carga.

Se P4.01 for ajustado em 0, o inversor otimizará o torque de saída de acordo com a carga automaticamente.

Por favor, consulte o diagrama a seguir:

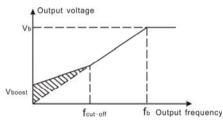


Figura 6.9 – DIAGRAMA de otimização de torque manual

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P4. 03	Limite de compensação de escorregamento V/F	0.00~200.0%	0.00~200.00	0.0%

A função de compensação de escorregamento calcula o torque do motor de acordo com a corrente de saída e compensa para a freqüência de saída. Esta função é usada para melhorar a eficiência de velocidade quando estiver operando em carga.

P4.03 ajusta o limite de compensação de escorregamento como a porcentagem da escala de escorregamento do motor, sendo esta porcentagem de 100%.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P4.04	Seleção do modo econômico de energia automático	0: Desabilitado 1: Habilitado	0~1	0

Quando P4. 04 é ajustado em 1, enquanto a carga for leve reduzirá a tensão de saída do inversor economizando energia.

6.6 Grupo P5 - Terminais de Entrada

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P5.00	Função do Terminal S1	Terminal multifuncional programável	0~25	1
P5.01	Função do Terminal S2	Terminal multifuncional programável	0~25	4
P5.02	Função do Terminal S3	Função do Terminal		7
P5.03	Função do Terminal S4	Terminal multifuncional programável	0~25	0

O significado de cada configuração é mostrado na tabela a seguir:

Valor	Função	Descrição
0	Invalido	Por favor, configure os terminais que não são usados como inválidos para evitar o mau funcionamento.
1	Forward	Desferies consulte e decesios de DE OF
2	Reverse	Por favor, consulte a descrição de P5. 05
3	3-wire control	Por favor, consulte a descrição de P5. 05
4	Jog forward	Des favor consulta a decesição de DO CO DO CA
5	Jog reverse	Por favor, consulte a descrição de P8.02~P8.04.
6	Parada por Inércia	O inversor bloqueia imediatamente a saída. O motor para por inércia mecânica.
7	Reset de Falhas	Reset as falhas que ocorreram. Ele terá a mesma função que a tecla STOP/RST.
8	Falha da Entrada Externa	Para o inversor e dispara um alarme quando ocorre uma falha em algum dispositivo periférico.
	Entrada Externa	raina em algum dispositivo periferico.

9	Comando Up		e freqüência do invers UP e comando Down	
10	Comando DOWN	K1 K2 K3	DOWN UP/DOWN	
11	Limpa UP/DOWN		inal para limpar config sulte a descrição do P	
12	Referência 1 do Multispeed		do controle de velo a combinação destes	
13	Referência 2 do Multispeed		detalhes, por favor, c	
14	Referência 3 do Multispeed		res dos estágios corre	
			empos de aceleração e ecionados pela combi	
15	Seleção de Tempo de	Terminal	Tempo ACC/DEC	Parâmetro Correspondente
	aceleração e desaceleração	OFF	Tempo de Aceleração 0	P0.08 P0.09
		ON	Tempo de Desaceleração 1	P8.00□P8.01
16	Pausa no PID	O ajuste será freqüência est	pausado e o inversor l ável.	manterá a saída e
	Pausa na	O inversor ma	antém a saída de fre	eqüência estável. Se
17	Operação	este terminal	for desabilitado, o in	nversor continuará a
	Transversal	operação transversal da freqüência atual.		
18	Reset Operação Transversal	Referência de freqüência do inversor será forçada como freqüência central de operação transversal		
19	Aceleração/ Desaceleração	saída de freqü	eração e a desacelera rência. Quando este te	erminal é habilitado,
	ramp hold	a aceleração e	e a desaceleração é re	einiciado.

20	Desabilita Controle do Torque	Controle do torque é desabilitado. O inversor trabalhará no modo de controle de velocidade.
21	Up/Down temporariamente invalida	A configuração UP/Down é inválida e não poderá ser limpo.Quando este terminal é desabilitado. Configurar Up/Down antes de ser válidado novamente.
22~25	Reservado	Reservado

Estado do terminal de referência multispeed e tabela de valores dos estágios correspondentes.

Terminal	Terminal Referência 1 de Multispeed		Referência 3 de Multispeed
Estágio	de Multispeed	de Multispeed	de Multispeed
0	OFF	OFF	OFF
1	ON	OFF	OFF
2	OFF	ON	OFF
3	ON	ON	OFF
4	OFF	OFF	ON
5	ON	OFF	ON
6	OFF	ON	ON
7	ON	ON	ON

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P5.04	Liga/desliga tempo dos filtros	1~10	1~10	5

Este parâmetro é usado para configurar a força do filtro dos terminais (S1 \sim S4). Quando há interferência pesada, o usuário deve aumentar para prevenir o mau funcionamento.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fabrica
P5.05	FWD/REV Modo de Controle	0: modo 1 de controle a 2 fios 1: modo 2 de controle a 2 fios 2: modo 1 de controle a 3 fios 3: modo 2 de controle a 3 fios	0~3	0

Este parâmetro define 4 diferentes modos de controle que controla a operação do inversor através dos terminais externos.

0: modo 1 de controle a 2 fios: integrado comando Start/Stop com direção de funcionamento.

K1	K2	Run command
OFF	OFF	Stop
ON	OFF	FWD
OFF	ON	REV
ON	ON	Stop

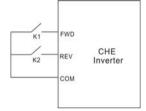


Figura 6.10 Modo 1 de controle a 2 fios.

1: modo 2 de controle a 2 fios : Start/stop comando determinado pelo terminal FWD. Direção de função é determinado pelo terminal Rev.

K1	K2	Comando Run
OFF	OFF	Stop
ON	OFF	FWD
OFF	ON	Stop
ON	ON	REV

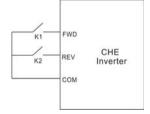


Figura 6.11 Modo 2 de controle a 2 fios

2: modo 1 contorle a 3 fios

SB1: tecla Start SB2: tecla Stop (NC)

K: tecla de direção de funcionamento (Run direction)

62

O terminal SIn \acute{e} um terminal de entrada multifuncional de S1 \sim S4. A função do terminal de ser ajustada em 3 (controle a 3 fios).

K	Comando Run
OFF	Stop
ON	FWD

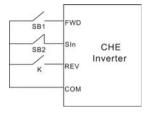


Figura 6.12 Modo 1 de conrole a 3 fios

3: modo 2 controle a 3 fios

SB1: tecla FWD SB2: tecla Stop (NC) SB3: Reverse tecla RUN

O terminal SIn \acute{e} um terminal de entrada multifuncional de S1 \sim S4. A função deve ser ajustada em 3 (controle a 3 fios)

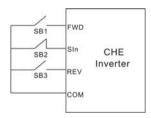


Figura 6.13 Modo 2 de controle a 3 fios

Nota: Quando o modo de controle a 2 fios esta ativo , o inversor não funcionará nas seguintes situações mesmo se o terminal FWD/REV.estiver habilitado :

- Coast to stop (pressione Run e stop/RST ao mesmo tempo).
- Comando de parada (stop command) da comunicação serial

O terminal FWD/Rev. É habilitado antes de ligar o equipamento. Por favor, consulte a descrição de P1. 11.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P5.06	Mudança da escala de configuração UP/DOWN	0.01~50.00Hz/s	0.01~50.00	0.50Hz/s

O Terminal UP/Down regula taxa incremental de configuração de freqüência.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P5.07	Al 1 abaixo do limite	0.00V~10.00V	0.00~10.00	0.00V
P5.08	Al1- Abaixo do correspondente à configuração	-100.0%~100.0%	-100.0~100.0	0.0%
P5.09	Al1 acima do limite	0.00V~10.00V	0.00~10.00	10.00V
P5.10	Al1 acima do limite correspondente a configuração	-100.0%~100.0%	-100.0~100.0	100.0%
P5.11	Tempo constante do filtro Al1	0.00s~10.00s	0.00~10.00	0.10s

Estes parâmetros determinam o relacionamento entre tensão de entrada analógica e valor de configuração correspondente. Quando a tensão analógica de entrada excede o range entre abaixo do limite e acima do limite, será considerado como acima do limite ou abaixo do limite.

A entrada analógica Al 1 é somente uma entrada de tensão , e seu range é de 0V ~ 10V. Para diferentes aplicações, o valor correspondente a 100% analógico ajustado é diferente. Para maiores informações, por favor, consulte a descrição de cada aplicativo.

Nota: Al 1 abaixo do limite deve ser menor ou igual que Al 1 acima do limite.

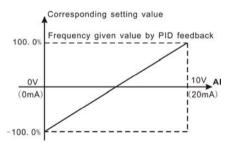


Figura 6.14 Relação entre AI e a configuração correspondente.

Al 1 tempo de filtro constante é efetivo quando existem mudanças repentinas ou ruídos no sinal da entrada analógica. As respostas diminuem enquanto aumentam as configurações.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P5.12	Al2 abaixo do limite	0.00V~10.00V	0.00~10.00	0.00V
P5.13	Al2 configuração correspondente abaixo do limite	-100.0%~100.0%	-100.0~100.0	0.0%
P5.14	Al2 acima do limite	0.00V~10.00V	0.00~10.00	10.00V
P5.15	Al2 configuração correspondente acima do limite	-100.0%~100.0%	-100.0~100.0	100.0%
P5.16	Al2 Tempo constante do filtro	0.00s~10.00s	0.00~10.00	0.10s

Por favor, consulte a descrição de Al1. Quando Al2 é ajustado como corrente de entrada $0 \sim 20$ mA, a escala de tensão correspondente será de $0 \sim 5$ V.

6.7 Grupo P6 - Terminais de Saída

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P6.00	Seleção saída Y	Saída do coletor aberto	0~10	1
P6.01	Seleção de relê de saída	Rele de saída	0~10	3

Rele de saída OC / estão indicados na tabela abaixo:

Configuração Valor	Função	Descrição
0	Sem Saída	O terminal de saída não tem função
1	Funcionamento em sentido Horário	ON: Durante funcionamento em sentido horário
2	Funcionamento em sentido anti- horário	ON: Durante funcionamento em sentido anti-horário
3	Falha de saída	ON: O inversor está em estado de falha
4	FDT alcançado	Por favor, consulte a descrição de P8. 13 e P8. 14
5	Freqüência alcançada	ON: A freqüência de funcionamento do inversor é zero.
6	Funcionamento em velocidade Zero	ON: A freqüência de funcionamento do inversor é zero

7	Freqüência acima do limite alcançada	ON: A freqüência de funcionamento alcança o valor de P0.05.
8	Freqüência abaixo do limite alcançada	ON: A freqüência de funcionamento alcança o valor de P0.06.
9~10	Reservado	Reservado

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P6.02	Seleção AO	Saída analógica Multifuncional	0~10	0

Corrente (0~20mA) ou tensão (0~10V) a saída pode ser selecionada pelo Jumper J15. Funções AO estão indicadas na tabela a seguir:

Configuração Valor	Função	Range
0	Freqüência de Funcionamento	0Freqüência máxima (P0.04)
1	Referência de Freqüência	0Freqüência máxima (P0.04)
2	Velocidade do Motor	0~2* velocidade sincronizada do motor
3	Corrente de saída	0~2* classificação de corrente do inversor
4	Tensão de saída	0~1.5* classificação de tensão do inversor
5	Potência de Saída	0∼2* classificação da potência
6	Torque de saída	0∼2*classificação da corrente
7	Al1 Tensão	0~10V
8	Al2 Tensão/corrente	0~10V/0~20mA
9~10	Reservado	Reservado

Código da Função	Nome	ome Descrição		Configuração de Fábrica
P6.03	AO Abaixo do Limite	0.0%~100.0%	0.0~100.0	0.0%
P6.04	AO abaixo do correspondente a saída	0.00V ~10.00V	0.00~10.00	0.00V

P6.05	AO Acima do limite	0.0%~100.0%	0.0~100.0	100.0%
P6.06	AO acima do limite correspondente a saída	0.00V ~10.00V	0.00~10.00	10.00V

Estes parâmetros determinam a relação entre tensão/corrente de saída analógica e o valor de saída correspondente. Quando o valor da saída analógica excede o range entre abaixo do limite e acima do limite, sairá acima do limite ou abaixo do limite.

Quando AO é corrente de saída, 1mA é correspondente a 0,5V.

Para diferentes aplicações o valor correspondente a 100% da saída analógica é diferente.

Para detalhes, por favor, consulte a descrição para cada aplicação.

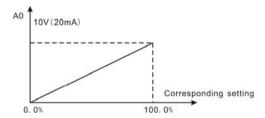


Figura 6.15 Relação entre AO e a configuração correspondente

Seção 5.02 6.8 Grupo P7-Parâmetros da IHM

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P7.00	Senha	0~65535	0~65535	0

A função de proteção da senha será valida quando for configurada com uma informação diferente de 0. Quando P7.00 é diferente de 00000, a senha do usuário configurada anteriormente será apagada e a função de proteção da senha será desabilitada.

Depois que a senha for configurada e seja validada, o usuário não pode acessar o menu se a senha do usuário estiver errada. Somente quando a senha do usuário é usada, o usuário pode ver e modificar parâmetros. Por favor lembre-se da senha do usuário.

Código da Função	Nome	Descrição	Configuração de Range	Configuração de Fabrica
P7.01	Seleção do Idioma - LCD	0: Chinese 1: English	0~1	0
P7.02	Copia parametro	0: linvalido 1: Upload 2: Download	0~2	0

P7.02 Terá efeito a IHM LCD é usada.

- 1: todos os valores dos parâmetros serão up-load do inversor para a IHM LCD.
- 2: Os valores dos parâmetros serão download serão baixados do LCD para o inversor

Nota : quando a operação up-load e/ou down load estiver completada P7.02 será configurado em 0 automaticamente .

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P7. 03	QUICK/JOG Seleção de função	0: Jog 1:FDW/REV switching 2: Clear UP/DOWN setting	0~2	0

QUICK/JOG é uma tecla multifunção, sua função é definida no parametro P7.03.

- 0: Jog: Pressione QUICK/JOG, o inversor funcionará pelo modo Jog.
- 1: Alternar FWD/REV : Pressione QUICK/JOG, o inversor mudará o sentido de rotação. Somente válido se P0.03 está configurado para 0.
- 2: Limpar a configuração UP/DOWN: Pressione QUICK/JOG, a configuração UP/DOWN será limpa.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P7.04	função da opção STOP/RST	0: Válido quando o parâmetro P0.01=0 1: Válido quando o parâmetro P0.01=0 ou a entrada de controle for igual a 1. 3: Válido quando o parâmetro P0.01=0 ou o controle de comunicação for igual a 2. 4:Sempre válido	0~3	0

OBSERVAÇÃO:

- O valor de P7.04 determina a parada para a função STOP/RST.
- O reset da função STOP/RST é sempre válida.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P7.05	Seleção IHM	O: Preferencialmente a IHM externa 1: Funciona as 2 IHM's, porém somente a IHM externa é válida. 2:funciona as 2 IHM's, porém somente a IHM local é valida 3:funciona as 2 IHM's e as 2 IHM's são válidas.	0~3	0

- 0: Quando existe IHM externa, a IHM local será inválida.
- 1: IHM local e externa simultânea, somente as teclas da IHM externa serão válidas.
- 2: IHM local e externa simultânea, somente as teclas da IHM local serão válidas.
- 3: IHM local e externa simultânea, as teclas das IHM's local e externa serão válidas.

Observação: Essa função deve ser usada com atenção, caso contrário pode ocorrer um mau funcionamento.

OBSERVAÇÃO:

- Quando P7.05 é configurado para 1, a IHM local é valida se a IHM externa não está conectada.
- Quando a IHM externa está conectada, P7.05 deve ser configurado para 0.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica	
P7.06	Seleção do estado do display com o inversor em trabalho	0~0x7FFF	0~0x7FFF	0xFF	

P7.06 define o parâmetro que deve ser mostrado pelo LED em estado de funcionamento. Se o Bit é 0, o parâmetro não será mostrado; Se o Bit é 1, o parâmetro será mostrado. Pressione //SHIFT para passar esses parâmetros em ordem direita. Pressione //DATA/ENT + QUICK/JOG para passar esses parâmetros em ordem esquerda.

O conteúdo do display correspondente para cada bit do P7.06 é descrito na seguinte tabela:

BIT7	BIT	6	BIT	5 BIT4		T4	BIT3		BIT2		В	IT1		BIT0
Torque de Saída	Potên de Saío	;	Velocid de Rotaç			ente e ída	e d		Tensão do Barram.DC		(Referencia de Freqüência		eqüência le Saída
BIT15		BIT	14	ВІТ	Г13	BIT	12	Bľ	T11	BIT	10	BIT9		BIT8
Reservac			passo speed	Α	12	Αl·	1	terr	tado do minal Saída	Estad term de Entra	inal e	Realin PID	n.	Presset PID

Por exemplo, se o usuário necessite que no display apareça a tensão de saída, tensão do barramento DC, referencia de freqüência, saída de freqüência, estado do terminal de saída, o valor de cada bit deve ser como na tabela abaixo:

BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
0	0	0	0	1	1	1	1
BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
0	0	0	1	0	0	0	0

O valor P7.06 é 100Fh.

Observação: Estado do terminal I/O é mostrado em decimal.

Para detalhes, por favor, consulte a descrição do P7.18 e P7.19.

	. and detailed, per later, contains a decongae de l'ille et l'ille					
Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica		
P7.07	Seleção do parâmetro mostrado no display com o inversor em stop	0~0x1FF	0~0x1FF	0xFF		

P7.07 determina o parâmetro mostrado no display com o inversor em stop. O método de configuração é similar com P7.06.

O conteúdo correspondente para cada bit do P7.07 é descrito na seguinte tabela:

	ilicudo i	oon coponacine pe	ila bada bil	4017.07	s accounte ii	a ocganic tabl	Jiu.
BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
Al2	Al1	Realimentação PID	Presset PID	Estado do terminal de saída	Estado do terminal de entrada	Tensão do barramento DC	Referencia de frequencia

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
Reservado	N° do passo multi- speed						

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P7.08	Temperatura do modulo retificador	0~100.0□		
P7.09	Temperatura do modulo IGBT	0~100.0□		
P7.10	Versão do software			
P7.11	Tempo acumulado de funcionamento	0~65535h		

Temperatura do módulo retificador: Indica a temperatura do modulo retificador. Ponto de proteção de sobre aquecimento.

Temperatura do módulo IGBT: Indica a temperatura do modulo IGBT. Ponto de proteção de sobre aquecimento.

Versão do Software: Indica a versão do software corrente do DSP.

Tempo de funcionamento acumulado: Mostra o tempo de funcionamento acumulado do inversor.

Observação: Os parâmetros acima são somente de leitura.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P7.12	3º ultima falha	0~24		
P7.13	Penúltima falha	0~24		
P7.14	Falha corrente	0~24		

Esses parâmetros armazenam o tipo dos 3 últimos alarmes. Para mais detalhes, por favor, consulte a descrição do capitulo 7.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P7.15	Saída de freqüência com falha de corrente.	Saída de freqüência com falha de corrente.		
P7.16	Saída de corrente com falha de corrente.	Saída de corrente com falha de corrente.		
P7.17	Barramento DC com falha de corrente.	Barramento DC com falha de corrente.		
P7.18	Estado do Terminal de Entrada	Este valor é gravado como estado do terminal de entrada. E o significado de cada bit é como a tabela abaixo: BIT3 BIT2 BIT1 BIT0 S4 S3 S2 S1 1 Indica que o terminal de entrada é correspondente a ON, enquanto 0 indica OFF. Nota: Este valor é mostrado como decimal.		
P7.19	Estado do terminal de saída	Este valor é gravado como estado do terminal de saída. E o significado de cada bit é como a tabela abaixo: BIT3 BIT2 BIT1 BIT0 RO Y 1 Indica que o terminal de entrada é correspondente a ON, enquanto 0 indica OFF. Nota: Este valor é mostrado como decimal.		

6.9 Grupo P8- Funções de Otimização

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P8.00	Tempo de aceleração 1	1.0~3600.0s	1.0~3600.0	20.0s
P8.01	Tempo de desaceleração 1	1.0~3600.0s	1.0~3600.0	20.0s

Para detalhes, por favor, consulte a descrição de P0.08 e P0.09.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P8.02	Referência de JOG	0.00~P0.04	0.00~ P0.04	5.00Hz
P8.03	Tempo de aceleração JOG	0.1~3600.0s	0.1~3600.0	Depende do modelo
P8.04	Tempo de desaceleração JOG	0.1~3600.0s	0.1~3600.0	Depende do modelo

O significado e a configuração de fábrica P8.03 e P8.04 é o mesmo do parâmetro P0.08 e P0.09. Não importa quais são os valores do P1.00 e P1.05, o jog iniciará em modo direto e desaceleração do modo de parada.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P8.05	Freqüência de Salto	0.00~P0.04	0.00~P0.04	0.00Hz
P8.06	Largura da banda de Freqüência de Salto	0.00~P0.04	0.00~P0.04	0.00Hz

Quando configurado o parâmetro salto de freqüência, o inversor pode manter a distância de ressonância mecânica com a carga. P8.05 é o valor central da freqüência a ser saltado.

NOTA:

- Se P08.06 é 0 a função de salto é inválida.
- Se P8.05 é 0, a função de salto é inválida não importa o que seja P8.06.
- A operação é proibida dentro da largura da banda de freqüência de salto, mas aceleração e desaceleração suave sem o salto.

A relação entre frequência de funcionamento e referencia de frequência é mostrada na figura abaixo:



Figura 6.16 Diagrama de freqüência de salto.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P8.07	Amplitude transversal	0.0~100.0%	0.0~100.0	0.0%
P8.08	Freqüência oscilante	0.0~50.0%	0.0~50.0	0.0%
P8.09	Tempo de subida transversal	0.1~3600.0s	0.1~3600.0	5.0s
P8.10	Tempo de descida transversal	0.1~3600.0s	0.1~3600.0	5.0s

Operação transversal é amplamente usada em indústria têxtil e de fibra química. A aplicação comum é mostrada na figura abaixo:

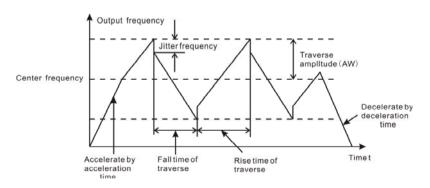


Figura 6.17 Diagrama de operação transversal.

A fregüência central (CF) é a fregüência de referência.

Amplitude transversal (AW) = freqüência central (CF) *P8.08%

Freqüência oscilante = amplitude transversal (AW) *P8.08%

Tempo de subida transversal: Indica o tempo de aumento da freqüência transversal mais baixa para a freqüência transversal mais alta.

Tempo de descida transversal = Indica o tempo de diminuição da freqüência transversal mais alta para a freqüência transversal mais baixa.

NOTA:

- O parâmetro P8.07 determina o range da freqüência de saída que é baixo.
- (1-P8.07%)* referência de freqüência é >= freqüência de saída =< (1 + P8.07%)* referência de freqüência
- A freqüência transversal de saída é limitada pelo limite máximo de freqüência (P0.05) e freqüência de limite mínimo (P0.06).

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P8.11	Tempo de Auto Reset	0~3	0~3	0
P8.12	Intervalo entre reset	0.1~100.0s	0.1~100.0	1.0s

A função de auto reset pode reajustar as falhas nos momentos e intervalos presentes. Quando P8.11 é ajustado em 0, significa "auto ajuste" e o dispositivo de proteção será ativado em caso de falhas.

NOTA: As falhas tais como: Saída 1, Saída 2, Saída 3, OH 1 e OH2 não pode ser reajustado automaticamente.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P8.13	Nível FDT	0.00~ P0.04	0.00~ P0.04	50.00Hz
P8.14	Atraso FDT	0.0~100.0%	0.0~100.0	5.0%

Quando a freqüência de saída atingir uma determinada freqüência de pré-ajuste (nível FDT), saída de terminal emitirá um sinal ON-OFF até que a freqüência de saída caia abaixo de um nivel de freqüência FDT (nivel FDT – defazagem de FDT), como mostrado na figura a seguir:

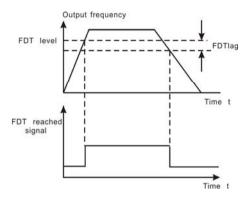


Figura 6.18 Diagrama de nível de FDT e defasagem.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P8.15	Range de Detecção de Freqüência	0.0~100.0%□Freqüência maxima□	0.0~100.0	0.0%

Quando a frequência de saída está dentro da variação da referência de frequência, um sinal ON-OFF será emitido.

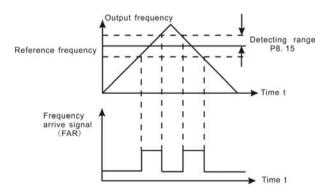


Figura 6.19 Diagrama de range de detecção de frequência

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P8.16	Tensão de Disparo de Frenagem	115.0~140.0%	115.0~140.0	Depende do Modelo

Quando a tensão de barramento DC for maior que o valor do parametro P8.16, o inversor iniciará a frenagem dinâmica.

Observação:

- A configuração de fábrica é de 120% se a tensão do inversor for 220V.
- A configuração de fábrica é de 130% se a tensão do inversor for 380V.
- O valor do parametro P8.16 corresponde a tensão do barramento DC como tensão de entrada.

Código da função	Nome	Descrição	Configuração do range	Valor padrão
P8.17	Coeficiente de velocidade de rotação	0.1~999.9%	0.1~999.9%	100.0%

Este parâmetro é usado para calibrar as bias entre velocidade mecânica atual e velocidade de rotação. Segue abaixo a fórmula:

Velocidade mecânica atual = 120 * freqüência de saida *P8.17 / Número de pólos do motor.

Seção 5.03 6.10 Grupo P9—Controle PID

O controle de PID é um método normalmente usado em processo de controle, tais como fluxo, pressão e controle de temperatura. O principal primeiramente detecta as BIAS entre o valor pre-programado e o valor de realimentação, e então calcula a freqüência do inversor de acordo com o ganho proporcional, tempo integral e diferencial. Por favor consulte a figura abaixo:

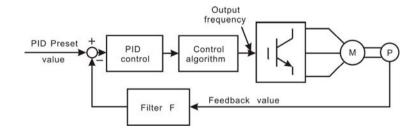


Figura 6.20 Diagrama do controle PID.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P9.00	Seleção do Presset do PID	0: IHM 1: Entrada analógica 1 (Al1) 2: Entrada analógica 2 (Al2) 3: Comunicação 4: Multi-speed	0~4	0
P9.01	Presset do PID pela IHM	0.0%~100.0%	0.0~100.0	0.0%
P9.02	Seleção de Realimentação do PID	0: Al1 1: Al2 2: Al1+Al2 3: Communicação	0~3	0

Estes parâmetros são usados para selecionar o presset de PID e a fonte de realimentação.

Observação:

- O valor do presset e o valor da realimentação do PID são valores em porcetagem.
- 100% do valor do presset é correspondente a 100% so valor da realimentação
- A fonte do presset e da realimentação não pode ser a mesma, caso contrário o PID oferecerá um mau funcionamento.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P9.03	Caracteristicas da saida do PID	0: Positivo 1: Negativo	0~1	0

- 0: Positivo: Quando o valor a realimentação for maior do o valor do presset, a freqüência de saída diminuirá, tais como controle de tensão em aplicações de ventilação.
- 1: Negativo: Quando o valor da realimentação for maior do que o valor do presset, a freqüência de saída aumentará, tais como o controle de tensão em aplicações de antiventilação.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P9.04	Ganho proporcional (Kp)	0.00~100.00	0.00~100.00	0.10
P9.05	Tempo Integral (Ti)	0.01~10.00s	0.01~10.00	0.10s
P9.06	Tempo diferencial (Td)	0.00~10.00s	0.00~10.00	0.00s

- Optimize a resposta ajustando os parametros enquando direciona uma carga atual
- Aiuste do controle PID:
- Siga o procedimento a seguir para ativar o controle de PID e então ajuste-o enquanto monitora a resposta:
- 3. Habilita contro PID (P0.03=5)
- 4. Aumenta a proporção de ganho (Kp) o máximo possível sem gerar instabilidade.
- 5. Reduz o tempo integral (Ti) o máximo possével sem criar instabilidade.
- 6. Aumenta o tempo derivativo (Td) o máximo possível sem criar instabilidade.
- Fazendo ajustes finos:
- Primeiro ajuste as constantes individuais do controle PID e faça um ajuste fino.
- Redução de sobre-sinal
- Se ocorrer sobre-sinal, diminua o tempo derivativo aumento o tempo integral.

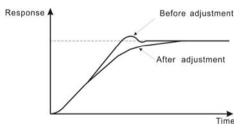


Figure 6.21 Diagrama de redução sobre-sinal

- Estabilizando rapidamente o estado de controle
- Para estabilizar rapidamente as condições de controle mesmo quando ocorre sobre-sinal, diminua o tempo integral e aumente o tempo derivativo.

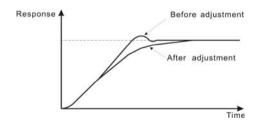


Figure 6.22 Diagrama de redução da oscilação sobre-sinal

Redução da oscilação de longo ciclos

 Se ocorrer oscilação com ciclos maiores do que o tempo de configuração do tempo integral, significa que essa operação integral está errada.

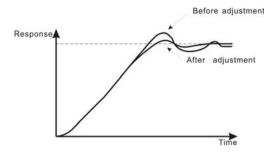


Figure 6.23 Diagrama de redução de ciclo longo de oscilação

 Se a ocilação não pode ser reduzida mesmo se configurar o tempo derivativo a 0, então diminua o tempo proporcional ou aumente o tempo constante do atrazado do PID primário.

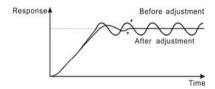


Figura 6.24 Diagrama de Redução de ciclo curto de ocilação

Se a ocilação não pode ser reduzida mesmo se configurar o tempo derivativo a 0, então diminua o tempo proporcional ou aumente o tempo constante do atrazado do PID primário.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P9.07	Tempo de amostragem (T)	0.01~100.00s	0.01~100.00	0.10s
P9.08	limite de Bias	0.0~100.0%	0.0~100.0	0.0%

O tempo de amostragem (T) refere-se ao ciclo de mostragem do valor da realimentação.

O regulador PI calcula uma vez em cada ciclo de mostragem. Quanto maior o ciclo de mostragem, mais baixa é a resposta.

O limite de Bias define o Bias máximo entre a realimentação e o preset.O PID para de funcionar quando o bias estiver dentra dessa escala. Para garantir estabilidade e precisão do sistema de saída é necessário configurar estes parâmetros corretamente.

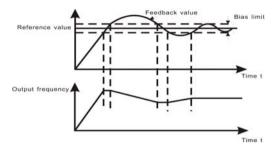


Figura 6.25 Relação entre limite de Bias e frequência de saída

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
P9.09	Valor de detecção de Perda da Realimentação	0.0~100.0%	0.0~100.0	0.0%
P9.10	Tempo de Detecção de Perda da Realimentação	0.0~3600.0s	0.0~3600.0	1.0s

Quando o valor de realimentação é menor do que P9.09 continuamente para o período determinado pelo P9.10, o inversor indicará falha, caso perca-se a realimentação (PID). Observação: 100% do P9.09 é o mesmo que 100% do P9.10

Seção 5.04 6.11 Grupo PA - Controle Multi-Speed

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
PA.00	Multi-speed 0	-100.0~100.0%	-100.0~100.0	0.0%
PA.01	Multi-speed 1	-100.0~100.0%	-100.0~100.0	0.0%
PA.02	Multi-speed 2	-100.0~100.0%	-100.0~100.0	0.0%
PA.03	Multi-speed 3	-100.0~100.0%	-100.0~100.0	0.0%
PA.04	Multi-speed 4	-100.0~100.0%	-100.0~100.0	0.0%
PA.05	Multi-speed 5	-100.0~100.0%	-100.0~100.0	0.0%
PA.06	Multi-speed 6	-100.0~100.0%	-100.0~100.0	0.0%
PA.07	Multi-speed 7	-100.0~100.0%	-100.0~100.0	0.0%

Observação

- 100% do multi-speed x correspondente a frequencia maxima(P0.04).
- Se o valor do multi-speed x é negativo, a direção desse passo será reverso , caso contrario será sentido horário.
- Função Multi-speed terá alta prioridade.

Seleção do passo é determinado pela combinação dos terminais multi-speed. Por favor consulte a seguinte tabela e figura

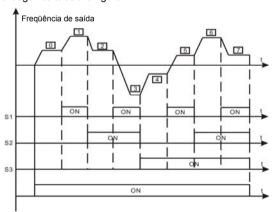


Figura 6.26 Diagrama de operação multi-speed.

Terminal Passo	Multi-speed referencia1	Multi-speed referencia2	Multi-speed referencia3
0	OFF	OFF	OFF
1	ON	OFF	OFF
2	OFF	ON	OFF
3	ON	ON	OFF
4	OFF	OFF	ON
5	ON	OFF	ON
6	OFF	ON	ON
7	ON	ON	ON

Seção 5.05 6.12 Grupo PB- Funções de proteção

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
PB.00	Proteção de Sobrecarga do Motor	0:Desabilitado 1:Motor normal 2:Freqüência variavel do motor	0~2	2

- 1: Para motor normal, a baixa velocidade, menos eficiente será a refrigeração.Baseado nesse conceito, se a saida de frequencia for menor que 30Hz, o inversor reduzirá o ponto de disparo para proteção de sobrecarga do motor.
- 2:Como o efeito de refrigeração da frequencia variavel do motor não tem ligação com a velocidade de funcionamento, não é obrigatório ajustar o disparo da proteção de sobrecarga do motor.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
PB.01	Proteção de Sobre corrente no Motor	20.0%~120.0%	20.0~120.0	100.0%

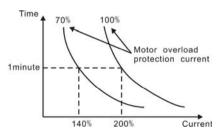


Figura 6.27 Curva de proteção de sobrecarga no motor.

O valor pode determinado pela seguinte fórmula:

Proteção de sobre carga de corrente no motor=escala de corrente do motor/ escala de corrente do motor)* 100%

Observação:

- Esse parâmetro é normalmente usado quando a escala de potência do inversor é maior que a potência de saída do motor.
- Tempo de proteção de sobrecarga no motor :60s com 200% da escala de corrente. Para detalhes, consultar a figura acima.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
PB.02	Disparo para funcionamento do motor por inércia	70.0~110.0%	70.0~110.0	80.0%
PB.03	Taxa de redução para funcionamento do motor por inércia	0.00Hz~P0.04	0.00Hz~P0.04	0.00Hz

Se PB.03 é ajustado para 0, o funcionamento do motor por inércia é invalido.

Funcionamento do motor por inércia é habilitado para performace de compensação de baixa tensão quando o barramento de tensão DC cai abaixo PB.02. O inversor pode continuar ligado sem funcionamento por inércia para reduzir a saída de freqüência e realimentção de energia via motor.

Observação: Se PB.03 é grande, a realimentação de energia do motor será grande também e pode causar falha de sobre voltagem.Se PB0.03 é pequeno, a realimentação de energia do motor será pequena para ativar o efeito da compensação de tensão. Por favor ajuste PB.03 de acordo com a inércia da carga e a carga atual.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
PB.04	Poteção contra sobre carga de parada	0: Habilitado 1:Desabilitado	0~1	1
PB.05	Ponto de proteção contra sobre carga de parada	110~150%	110~150	380V:130% 220V:120%

Durante a desaceleração, a escala da desaceleração do motor pode ser menor que a freqüência de saída do inversor devido a carga de inércia. Nesse momento, o motor retornará energia para o inversor, resultando um aumento da tensão DC. Se não for feito a medição o inversor sofrerá uma alteração devido a sobre tensão.

Durante a desaceleração, o inversor detecta o barramento de tensão DC e o compara com o ponto de proteção contra sobrecarga de parada. Se a tensão do barramento DC exceder o PB.05, o inversor irá parar reduzindo a freqüência de saída. Quando a tensão do barramento DC é menor que PB.05, a desaceleração continua, como mostrada na seguinte figura.

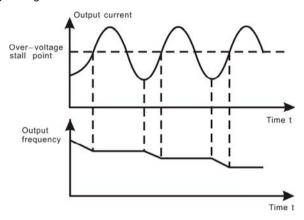


Figura 6.28 Função de sobre tensão de parada.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
PB.06	Disparo do limite alto de corrente	50~200%	50~200	Modelo G: 160% Modelo P: 120%
PB.07	Taxa de redução de frequencia quando o limite de corrente é alcançado	0.00~100.00Hz/s	0.00~100.00	10.00Hz/s

Limite auto de corrente é usado para limitar a corrente do inversor menor que o valor determinado pelo PB.06 em tempo real. Sendo assim o inversor não sofrerá alteração devido ao surgimento de sobre corrente. Essa função é especialmente util para aplicações com grande carga de inércia ou com estágio de mudança de carga.

PB06 É um percentual da escala de corrente do inversor.

PB07 Define a escala de redução da ferqüência de saída quando a função é ativada. Se PB06 Pequeno, pode ocorrer falha de sobrecarga. Se é grande, a freqüência mudará precisamente e sendo assim, a realimentação de energia do motor será grande e causará falha de sobre tensão. Essa função é sempre habilitada durante a aceleração e desaceleração.

Observação:

- Durante o processo de limite auto de corrente, a frequencia de saida do inversor deve mudar; sendo assim é recomendado não habilitar essa função quando requer a saida de frequencia do inversor estabilizada.
- Durante o processo de limite auto de corrente, se PB06 é baixo, a capacidade de sobre carga será impactada.

Por favor consulte a seguinte figura.

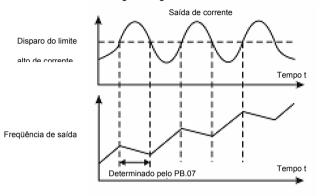


Figure 6.29 Função de proteção de limite de corrente .

Seção 5.06 6.13 Grupo PC-Comunicação serial

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
PC.00	Endereço local	1~247	0~247	1

Esse parâmetro determina o endereço do escravo usado para comunicação com o mestre. O valor "0" é o endereço de transmissão.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fabrica
PC.01	Seleção de Baud rate	0: 1200BPS 1: 2400BPS 2: 4800BPS 3: 9600BPS 4: 19200BPS 5: 38400BPS	0~5	3

Esse parâmetro pode ajustar a velocidade de transmissão do dado durante a comunicação serial.

Observação: O baud Rate do mestre deve ser o mesmo do escravo.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
PC.02	Formato do dado	0~17	0~17	0

Esse parâmetro define o formato do dado usado no protocolo de comunicação.

- 0: RTU, 1 start bit, 8 data bits, no parity check, 1 stop bit.
- 1: RTU, 1 start bit, 8 data bits, even parity check, 1 stop bit.
- 2: RTU, 1 start bit, 8 data bits, odd parity check, 1 stop bit.
- 3: RTU, 1 start bit, 8 data bits, no parity check, 2 stop bits.
- 4: RTU, 1 start bit, 8 data bits, even parity check, 2 stop bits.
- 5: RTU, 1 start bit, 8 data bits, odd parity check, 2 stop bits.
- 6: ASCII, 1 start bit, 7 data bits, no parity check, 1 stop bit.
- 7: ASCII, 1 start bit, 7 data bits, even parity check, 1 stop bit.
- 8: ASCII, 1 start bit, 7 data bits, odd parity check, 1 stop bit.
- 9: ASCII, 1 start bit, 7 data bits, no parity check, 2 stop bits.
- 10: ASCII, 1 start bit, 7 data bits, even parity check, 2 stop bits.
- 11: ASCII, 1 start bit, 7 data bits, odd parity check, 2 stop bits.
- 12: ASCII, 1 start bit, 8 data bits, no parity check, 1 stop bit.
- 13: ASCII, 1 start bit, 8 data bits, even parity check, 1 stop bit.
- 14: ASCII, 1 start bit, 8 data bits, odd parity check, 1 stop bit.
- 15: ASCII, 1 start bit, 8 data bits, no parity check, 2 stop bits.
- 16: ASCII, 1 start bit, 8 data bits, even parity check, 2 stop bits.
- 17: ASCII, 1 start bit, 8 data bits, odd parity check, 2 stop bits.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
PC.03	Tempo de Atraso na Comunicação	0~200ms	0~200	5ms

Esse parâmetro pode ser usado para ajustar o atraso na resposta na comunicação para adaptar para modbus master. Em modo RTU, o atraso na comunicação atual deve ser menor que 3.5 caracteres em modo ASCII, 1ms.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
	Tempo de	0.0:		
PC.04	Timeout da	Desabilitado	0~100.0	0.0s
	Comunicação	0.1~100.0s		

Quando o valor é zero , essa função será desabilitada. Quando a interrupção na comunicação é maior que o valor 0 do PC.04, o inversor apresentará alarme de erro de comunicação(CE).

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
PC.05	Ação em Caso de Erro na Comunicação	0:Alarme e stop 1:Sem alarme e continua o funcionamento 2:Sem alarme mas para o inversor de acordo com P1.05(se P0.01=2) 3: sem alarme mas para de acordo com P1.05	0~3	1

- 0: Quando ocorre um erro de comunicação, o inversor apresentará alarme de comunicação e cessará o funcionamento.
- 1:Quando ocorrer um erro na comunicação , o inversor omitirá o erro e continuará o funcionamento.
- 2: Quando um erro de comunicação ocorrer , if P0.01=2, o inversor não vai alarmar mas cessará o funcionamento de acordo com o modo de parada determinado pelo P1.05.Caso contrário o erro será omitido.

3: Quando ocorrer erro na comunicação , o inversor não vai alarmar mas cessará o funcionamento de acordo com o modo determinado pelo P1.05.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
PC.06	Ação de Resposta	Local da unidade do led 0:responde para escrever 1:não responde para escrever nos 10 locais dos led 0: não salva a referência quando desligado 1:salva a referência quando é desligado	0~1	0~1

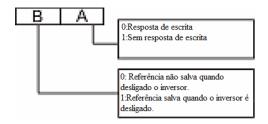


Figure 6.30 Significado do PC.06.

A stands for: Unit's place of LED. B stands for: Ten's place of LED

Seção 5.07 6.14 Grupo PD- Funções suplementares

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
PD.00	Baixa Freqüência de Limite de Restrição a Ocilação	0~500	0~500	5
PD.01	Alta Freqüência de Limite de Restrição a Ocilação	0~500	0~500	100

Essa função é válida somente quando o PD.04 é configurado em 0. Quanto menor o valor de PD.00 e PD.01, mais eficaz será o efeito de restricão a ocilação.

Observação: A maioria dos motores podem ter oscilação de corrente em um mesmo ponto de freqüência. Por favor, seja cuidadoso ao ajustar estes parâmetros para obter baixas oscilações.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
PD.02	Amplitude de Restrição a Ocilação	0~10000	0~10000	5000

Este pârametro é usado para limitar a amplitude de restrição a oscilação. Se o valor PD.02 for muito alto, pode causar sobre corrente no inversor. Deve ser configurado um pouco mais baixa para maior potência do motor, e vice-versa.

Descrição Detalhada das Funções

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
PD.03	Banda de restrição a Ocilação	0.0~P0.04	0.0HZ~P0.04	12.5HZ

Se a freqüência de saída for maior que PD.03, utiliza-se o valor PD.00, caso contrário utiliza-se o valorPD.01 .

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
PD.04	Restrição a Ocilação	0: Habilitar 1: Desabilitar	0~1	0

O motor sempre tem corrente de oscilação quando a carga é leve. Isso causará operação anormal mesmo sobre corrente. Para detalhes, por favor rever a descrição do PD.00 ~ PD.03.

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
PD.05	Modo PWM	0: PWM modo 1 1: PWM modo 2 2: PWM modo 3	0~2	0

Para obter as características desses modos, por favor consulte a tabela abaixo:

	Ruído em	Ruído em	
Modo	Freqüência	Freqüência	Outros
	Baixo	Alta	
PWM modo 1	Baixo	Alto	
			Precisa ser derated, por causa
PWM modo 2	Bai	ixo	do aumento de alta
			temperatura.
PWM modo 3	Alto		Pode retrair a ocilação com
F WWW IIIOUO 3	AI	10	mais eficiência

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
PD.06	Fonte de Configuração do Torque	0:IHM 1:Al1 2:Al2 3: Al1+Al2 4:Configuração Mult- Speed 5: Comunicação	0~5	0
PD.07	Configuração de Torque pela IHM	-100.0%~100.0%	- 100.0%~100.0%	50.0%

- Controle de torque tem efeito:
- se Tset > Tload, a freqüência de saída aumentará continuamente até atingir limite alto de freqüência.
- se Tset<Tload, a freqüência de saída vai diminuir continuamente até atingir limite baixo de freqüência.
- O inversor pode funcionar em qualquer freqüência entre entre limite alto e baixo de freqüência somente quando Tset = Tload.
- Controle de torque pode ser alterado para controle de velocidade e vice-versa.
- Alterando pelo terminal multifuncional: Por exemplo, se o controle de torque é
 habilitado (P0.00) a fonte de configuração de torque é Al1, o valor do terminal
 multifuncional S5 é configurado para 20 (Controle de torque desabilitado). Quando
 S5 é válido, o modo de controle será alterado de controle de torque para controle
 de velocidade e vice versa.
- Quando está em funcionamento pelo modo de controle de torque, pressione STOP/RST, mudará para controle de velocidade automaticamente.
- Se a configuração de torque é + , o inversor funcionará em sentido horário caso contrário ele funcionará em sentido anti-horário.

Observação:

Quando em funcionamento pelo modo de controle de torque, o tempo de aceleração não há ligação com P8.08.

100% da configuração de torque é correspondente a 100% do P3.07 (limite de torque). Por exemplo, se a fonte de configuração de torque é IHM (PD.06 = 0, PD.07 = 80 % e P3.07 = 90%).

Configuração atual de torque = 80% (PD.07)*90% (P3.07 = 72%).

Código da Função	Nome	Descrição	Configuração do Range	Configuração de Fábrica
PD.08	Seleção de Limite Alto de Freqüência	0: IHM 1: Al1 2: Al2 3:Configuração Multi-Speed 4: Communicação	0~4	0

100% desse parametro é correspondente a 100% de P0.04 (freqüência máxima).

Quando está funcionando em modo de controle de torque, a freqüência de saída pode ser ajustada se mudar o limite alto de freqüência.

Descrição Detalhada das Funções

Código da Função	Nome	Descrição	Configuração de Range	Configuração de Torque
PD.09	Seleção Automática de Limite de Corrente	0: Habilitado 1: Desabilitado quando a Velocidade Constante	0~1	0

Função automática de limite de corrente é usada para previnir que o inversor mude de sobre corrente para um aumento repentino de corrente. É usado especialmente em aplicações de grandes cargas de inércia. Essa função é sempre habilitada durante a aceleração ou período de desaceleração.

Observação: Durante o processo de auto limite de corrente, a freqüência de saída do inversor pode mudar; sendo assim, é recomendado desabilitar a função quando a freqüência de saída necessita ser estabilizada.

Seção 5.08 6.15 Grupo PE—Configuração de Fábrica

Esses parâmetros pertencem ao grupo de parametros configurados de fábrica. O usuário não pode abrir este grupo de parâmetros.caso contrário causará anormalidade na operação do inversor ou dano.

Artigo VI.

Artigo VII.

Artigo VIII.

Artigo IX.

Artigo X.

Artigo XI.7. GUIA DE FALHAS

Seção 11.01

Seção 11.02 7.1 Falhas e Soluções

Código de falha	Tipo de falhas	Causa	Solução
OUT1	Falha IGBT Ph-U	Tempo Acc/Dec é muito curto.	Aumente o tempo Acc/Dec
OUT2	Falha IGBT Ph-V	2. Falha no módulo IGBT.	2. Solicite ajuda ao
OUT3	Falha IGBT Ph-W	3. Mau funcionamento causado por interferência. 4. Aterramento não é apropriado.	suporte técnico. 3. Inspecione o equipamento externo e elimine interferência.
OC1	Sobre-corrente durante aceleração	Curto circuito ou falha no terra ocorrido na saída do inversor.	Verfique se há danos no motor, isolação do condutor,
OC2	Sobre-corrente durante desaceleração	A carga é muito pesada	ou cabo danificado. 2. Aumente o tempo
	Sobre corrente durante	ou o tempo Acc/Dec é muito curto. 3. A curva V/F não é	Acc/Dec ou selecione uma capacidade maior para o inversor.
OC3	funcionamento com velocidade constante	apropriada. 4.Mudança rependina da carga.	3. Cheque e ajuste a curva V/F.
OV1	Sobre-tensão durante aceleração	O tempo Dec é muito curto e a energia regenerativa do motor é muito grande.	Aumente o tempo Dec ou conecte o resistor de frenagem.
OV2	Sobre-tensão durante desaceleração	2. Tensão de entrada é	Diminua a tensão de entrada de acordo com as especificações.

OV3	Sobre tensão quando funcionamento com velocidade constante		
UV	Sub tensão no barramento DC	1. Falta de fase na alimentação. 2. Perda momentanea da alimentação 3. Ligação dos terminais de entrada da alimentação estão soltos. 4.Flutuações de tensão de alimetação são grandes.	Inspecione a entrada de alimentação ou faça a ligação.
OL1	Sobre carga no motor	1. Carga pesada no motor em velocidade baixa por um longo tempo. 2. Curva imprópria 3. Disparo da proteção de sobre carga (PB.01) 4. Mudança repentina de carga.	1. Selecione a variável de frequência no motor 2. Cheque e ajuste a curva V/F. 3. Cheque e ajuste PB.01 4. Cheque e carregue.
OL2	Sobre carga no inversor	1. Carga é muito pesada ou o tempo Acc/Dec é muito curto. 2. Curva V/F imprópria 3. A capacidade do inversor é muito pequena.	1. Aumente o tempo Acc/Dec ou selecione um inversor de capacidade maior. 2. Cheque e ajuste a curva V/F. 3. Selecione inversor de capacidade maior.

SPI	Falha na fase de entrada	Falta de fase na alimentação Perda momentanea da alimentação Ligação dos terminais de entrada da alimentação estão soltos.	Cheque a fiação, instalação e alimentação.
		4.Flutuações de tensão de alimetação são grandes. 5. Balanceamento entre as fases não é bom	
		Há um fio quebrado no cabo de saída	
SPO	Falha na fase de saída	Há um fio quebrado no motor de ventilação.	Cheque a fiação e a instalação.
		Terminais de saída estão soltos.	
EF	Falha externa	Ex: Falha externa detectada no terminal de entrada.	Inspecione o equipamento externo.
	Sobre	1.Temperatura ambente é muito alta.	Instale unidade de refrigeração.
OH1	aquecimento no retificador	2. Fonte de calor próxima.	2. Remova fonte de calor.
		Cooler do inversor parado ou danificado.	Substitua o ventilador
OH2	Sobre aquecimento no IGBT	4. Obstrução do canal de ventilação 5. Frequência portadora é	Limpe o canal de ventilação.
		muito alta.	5. Diminua a frequência portadora.

CE	Falha de comunicação	1. Configuração de baud rate imprópria. 2. Recebimento de informação errada. 3. Comunicação é interrompida por muito tempo.	Configure um baud rate apropriado. Cheque a comunicação dos dispositivos e sinais.
ITE	Falha na detecção de corrente	Fios ou conectores da placa de controle estão soltos. O sensor Hall está danificado. Circuito amplificador está anormal.	Cheque a ligação. Solicite suporte técnico.
TE	Falha no auto ajuste	Configuração imprópria dos parâmetros do motor. Tempo de auto ajuste	Configure os valores dos parâmetros de acordo com a placa de identificação do motor.
		excedido.	Cheque a fiação do motor.
EEP	Falha na EEPROM	Falha no controle dos parâmetros R/W	1. Pressione STOP/RESET para resetar. 2. Solicite suporte técnico
PIDE	Falha na realimentação da	Realimentação do PID desconectada.	Inspecione a ligação da realimentação da PID.
	PID	Fonte da realimentação do PID desaparece.	Inspecione a fonte de realimentação da PID.
BCE	Falha na unidade de frenagem	Falha no circuito de frenagem ou dano no tubo de frenagem.	Inspecione a unidade de franagem, substitua o tubo de frenagem.
		Baixa resistência da conexão externa do resistor de frenagem.	Aumente a resistência de frenagem.
	Reserva de fábrica		

Seção 11.03 7.2 Soluções e Falhas Comuns

O inversor pode ter as seguintes falhas ou mau funcionamento durante a operação, por favor consulte as seguintes soluções:

7.2.1 Display não liga quando inversor é alimentado:

- Inspecione se a tensão de alimentação é a mesma da tensão característica do inversor ou verifique se existe alimentação com multímetro.
- Inspecione se a ponte refiticadora trifásica está em boas condições ou não. Se a ponte ratificadora está danificada consulte o suporte técnico.
- Cheque a luz de carga. Se a luz estiver desligada a falha é principalmente na ponte retificadora ou no resistor de armazenamento. Se a luz estiver acesa, a falha pode ser no chaveamento da alimentação. Por favor solicite suporte técnico.

7.2.2 Fonte de alimentação de ar é desligada imediatamente após seu ligamento:

- Inspecione se a alimentação de entrada está aterrada ou em curto circuito.
- Inspecione se a ponde retificadora está queimada ou não. Se estiver danificada, solicite suporte.

7.2.3 O motor não se move com o inversor em funcionamento:

- Inspecione se existe saída trifásica balanceada entre U, V, W. Se existir, o motor pode estar danificado, ou mecanicamente travado.
- Se a saída não está balanceada ou está perdida, a placa de potência do inversor ou módulo de saída podem estar danificados, solicite suporte técnico.

7.2.4 O display do inversor trabalha normalmente quando ligado mas muda entrada quando está em funcionamento.

- Inspecione se a saída do inversor está em curto circuito. Se estiver, por favor solicite suporte técnico.
- Inspecione se existem falhas de aterramento.
- Se existir um escorreagamento, e a distância entre o motor e o inversor for muito grande, é recomendado instalar um reator de saída AC.

Artigo XII. 8. MANUTENÇÃO

$\mathbf{\Lambda}$

ADVERTÊNCIA

- Manutenção deve ser executada de acordo com os métodos designados de manutenção.
- Manutenção, inspeção e substituição de peças deve ser feito somente por pessoa autorisada.
- Depois desligue o circuito central de alimentação, espere por 10 minutos antes de executar manutenção ou inspecionar.
- NÃO toque diretamente nos components ou dispositivos da placa PCB.
 Caso contrário, o inversor pode ser danificado pela eletroestática.
- •Depois da manutenção todos os parafusos deveram ser apertados.

Seção 12.01 8.1 Manutenção Diária

Para prevenir falhas no inversor e fazê-lo operar suavemente em alta-performance por um longo tempo, o usuário deve inspecionar o inversor periodicamente (semestralmente) A tabela a seguir indica o conteúdo da inspensão.

Itens para	Inspeçã	ăo principal	Critério
serem checados	Conteúdo da inspeção	Freqüência	Meios/Métodos
Ambiente de operação	1.Temperatura 2. Humidade 3. Poeira 4. Vapor 5. Gases	1. Ponto do termômetro - higrômetro 2. Observação 3. Checagem visual e por cheiro	1. Temperatura ambiente deve ser menor que 40 graus, caso contrário os valores ajustados deveram ser diminuidos. A umidade deve estar de acordo com o que foi pedido. 2. Sem acúmulo de pó, sem traços de vazamento de águas e sem condensados. 3. Sem cor ou cheiro anormal.

Inverter	Vibração Resfriamento aquecimento Ruído	1. Ponto do termômetro 2. Observação compreensiva 3. Verificação auditiva	1.Operação suave sem vibração 2. Ventilador está trabalhando em boas condições. Velocidade e fluxo de ar normal. Sem aquecimento anormal. Sem ruído anormal
Motor	1. Vibração 2. Calor 3. Ruído	Observação Ponto de termômico Verificação auditiva	 Sem vibração anormal e sem ruído anormal. Causar aquecimento anomal. Sem causa de aquecimento anormal. Sem ruído anormal.
Status dos parâ - metros de operação	1. Tensão de alimentação 2. Tensão de saída do inversor 3. Corrente de saída do inversor 4. Temperatura interna	1. Voltímetro 2. Voltímetro retificador 3. Amperímetro 4. Ponto de termômetro	Satisfazendo especificação Satisfazendo especificação Satisfazendo especificação Aumento de temperatura é menor que 40 graus

Seção 12.02 8.2 Manutenção Periódica

Usuário deve checar o driver a cada 3 ou 6 meses de acordo com o ambiente atual.

- 8.2.1 Cheque se os parafusos dos terminais de controle estão frochos. Se estiverem, apeete-os com um chave de fenda.
- 8.2.2 Cheque se os terminais do circuito principal estão conectados corretamente, e se os cabos estão super aquecidos.
- 8.2.3 Cheque se os cabos de alimentação e cabos de controle estão danificados, cheque especialmente a isolação do cabo e a tubilação.
- 8.2.4 Cheque se as fitas de isolamento em volta dos plugs estão danificadas.
- 8.2.5 Limpe a poeira dos PCBs e duto de ar com um aspirador de pó.
- 8.2.6 No caso de equipamentos que foram armazenados por muito tempo, eles deve ser ativados a cada dois anos. Quando usar fonte de tensão AC

- para alimentar o equipamento, use um regulador de tensão para aumentar a tensão de entrada para escala de tensão de entrada gradualmente. O equipamento deve ser ligado por 5 horas sem carga.
- 8.2.7 Antes de teste de desempenho de isolação todos os terminais de entrada e saída do circuito principal deve ser curto circuitado com os condutores. Então prosiga o teste de isolação para o terra. O teste de isolação de um único terminal para o terra é proíbido, caso contrário o aparelho poderá ser danificado. Por favor, use um megometro de 500 V.
- 8.2.8 Antes do teste de isolação do motor, desconecte o motor do equipamento para impeder danos.

Seção 12.03 8.3 Substituição de Peças de Reposição:

Cooler e capacitores eletrolíticos são peças de reposição, por favor faça a substituição periódica para certificar-se de uma operação segura, livre de falhas e por um longo prazo. Os períodos de substituição são os seguintes:

- Cooler: Deve ser substituido quando usado por mais de 20000 horas.
- Capacitores eletrolíticos: Devem ser substituidos por mais de 30000 ~40000 horas.

Seção 12.04

Seção 12.05 8.4 Garantia

A garantia de fábrica desse produto é de 12 meses a partir da data da compra.

Artigo XIII. 9. LISTA DAS FUNÇÕES DOS PARÂMETROS

Nota:

- Grupo PE são pré-definidos pelo fabricante, usuários estão proibidos de acessar esses parâmetros
- A coluna "Modificar" determina os parâmetros que podem ser modificados ou não.
 - "○" indica qual desses parâmetros podem ser modificados o tempo todo "⊚"indica qual desses parâmetros não podem ser modificados durante o funcionamento do inversor.
 - "●"indica qual desses parâmetros são somente para leitura.
- "Parâmetros de fábrica" indica o valor de cada parâmetro quando os parâmetros de fábrica são restaurados, mas esses parâmetros detectados ou valores gravados não podem ser restaurados.

Código da Função	Nome	Descrição	Configu- ração de Fábrica	Modifi- car	No. De Série
Grupo P0:	Funções Básicas				
P0.00	Seleção do modo de controle	0: controle vetorial sensorless 1:controle V/F 2:controle de torque	0	0	0
P0.01	Fonte de comandos para funcionamento	0:IHM(LED desligado) 1: Terminal (LED piscando) 2:Comunicação(LED acesso)	0	0	1
P0.02	Configuração teclas UP/DOWN	0:Válido, salva o valor UP/DOWN quando o inversor é desligado. 1: Válido, não salva o valor UP/DOWN quando o inversor é desligado. 2:Inválido 3: Válido durante o funcionamento, perde os valores quando o inversor para	0	0	2

Código da Função	Nome	Descrição	Configu- ração de Fábrica	Modifi- car	No. De Série
P0.03	Comando da freqüência A	0: IHM 1: Al1 2: Al2 3: Al1+Al2 4: Multi-speed 5: PID 6: Comunicação	0	0	3
P0.04	Freqüência máxima	10.00~600.00Hz	50.00Hz	0	4
P0.05	Limite alto de freqüência	P0.06~ P0.04	50.00Hz	0	5
P0.06	Limite baixo de freqüência	0.00 Hz ~ P0.05	0.00Hz	0	6
P0.07	Referência de freqüência da IHM	0.00 Hz ~ P0.04	50.00Hz	0	7
P0.08	Tempo de aceleração 0	0.0~3600.0s	Depende do modelo	0	8
P0.09	Tempo de desaceleração 0	0.0~3600.0s	Depende do modelo	0	9
P0.10	Seleção da direção de funcionamento	0: Horário 1: Anti-horário 2: Proibido reverter	0	0	10
P0.11	Freqüência portadora	1.0~15.0kHz	Depende do modelo	0	11
P0.12	Parâmetros de auto-ajuste do motor	0: Sem ação. 1:Auto-ajuste com motor em funcionamento. 2:Auto-ajuste com motor parado.	0	©	12
P0.13	Restaurar Parâmetros	0: Sem ação. 1: Restaurar com as configurações de fabrica. 2: Deletar as falhas armazenas na memória.	0	©	13

Código da Função	Nome	Descrição	Configu- ração de Fábrica	Modifi- car	No. De Série
P0.14	Função AVR	0:Desabilitado. 1:Habilitado o tempo todo. 2:Desabilita durante a desaceleração.	2	0	14
Grupo P1:	Controle de Partida e	Parada			
P1.00	Modo de Partida	0: Partida direta 1: Frenagem DC e partida	0	0	15
P1.01	Freq üência de Partida	0.00~10.00Hz	1.5Hz	0	16
P1.02	Tempo de Permanência da Freq üência de Partida	0.0~50.0s	0.0s	0	17
P1.03	Corrente de Frenagem DC antes da Partida	0.0~150.0%	0.0%	0	18
P1.04	Tempo de Frenagem DC antes da Partida	0.0~50.0s	0.0s	0	19
P1.05	Modo de Parada	0: Tempo de desaceleração 1: Parada por inércia	0	0	20
P1.06	Freq üência para Partida do Freio DC	0.00~P0.04	0.00Hz	0	21
P1.07	Tempo de Espera antes da Parada DC	0.0~50.0s	0.0s	0	22
P1.08	Corrente de Frenagem DC	0.0~150.0%	0.0%	0	23
P1.09	Tempo de Frenagem DC	0.0~50.0s	0.0s	0	24
P1.10	Tempo de Zona Morta entre a Reversão do Motor	0.0~3600.0s	0.0s	0	25
P1.11	Habilitar a Reversão quando o Inversor está em Funcionamento	0:Desabilitado 1:Habilitado	0~1	0	26

Código da Função	Nome	Descrição	Configu- ração de Fábrica	Modifi- car	No. De Série
P1.12	Reservado		0	0	27

Grupo P2	: Parâmetros do Moto	•			
P2.00	Opção G/P	0: G Model 1: P Model	Depende do modelo	0	28
P2.01	Potência do Motor	0.4~900.0kW	Depende do modelo	0	29
P2.02	Freq üência do Motor	0.01Hz~P0.04	50.00Hz	0	30
P2.03	RPM do Motor	0~36000rpm	Depende do modelo	0	31
P2.04	Tensão do Motor	0~2000V	Depende do modelo	0	32
P2.05	Corrente do Motor	0.8~2000.0A	Depende do modelo	0	33
P2.06	Resistência do Estator do Motor	0.001~65.535Ω	Depende do modelo	0	34
P2.07	Resistência do Rotor do Motor	0.001~65.535Ω	Depende do modelo	0	35
P2.08	Indutância de Fulga do Motor	0.1~6553.5mH	Depende do modelo	0	36
P2.09	Indutância Mutua do Motor	0.1~6553.5mH	Depende do modelo	0	37
P2.10	Corrente do Motor sem Carga	0.01~655.35A	Depende do modelo	0	38

Grupo P3: Controle Vetorial								
P3.00	Ganho Proporcional KP1 ASR	0~100	20	0	39			
P3.01	Tempo Integral KI1 ASR	0.01~10.00s	0.50s	0	40			
P3.02	Chaveamento no Ponto1 ASR	0.00Hz~P3.05	5.00Hz	0	41			
P3.03	Ganho Proporcional KP2 ASR	0~100	15	0	42			
P3.04	Tempo Integral KI2 ASR	0.01~10.00s	1.00s	0	43			
P3.05	Chaveamento no Ponto2 ASR	P3.02~P0.04	10.00Hz	0	44			
P3.06	Compensação de Escorregamento	50.0~200.0%	100%	0	45			
P3.07	Limite de Torque	0.0~200.0%	150.0%	0	46			

GrupoP4:	GrupoP4: Controle V/F								
P4.00	Seleção da Curva V/F	0:Curva linear 1:Curva de torque (curva de ordem 2)	0	0	47				
P4.01	Otimização do Torque	0.0%: (auto) 0.1□~10.0□	0.0%	0	48				
P4.02	Interrupção da Otimização do Torque	0.0%~50.0% (Freqüência do motor)	20.0%	0	49				
P4.03	Limite de Compensação de Escorregamento V/F	0.00~200.0%	0.0%	0	50				
P4.04	Seleção do modo Econômico de Energia Automático	0:Desabilita 1:Habilitado	0	0	51				
P4.05	Reservado			•	52				

P5 Grupo	: Terminais de Entrada	a			
P5.00	Função do Terminal S1	0: Inválido 1: Sentido Horáio 2: Sentido Anti-Horário 3: Controle a 3 fios	1	0	53
P5.01	Função do Terminal S2	4: JOG Horário 5: JOG Anti-Horáio 6: Parada por Inércia 7: Reset de Falhas 8: Entrada de Faha Externa 9: Comando UP (MOP)	4	©	54
P5.02	Função do Terminal S3	10: Comando DOWN (MOP) 11: Limpa UP/DOWN: 12: Mult-speed Referência1 13: Mult-speed Referência 2 14: Mult-speed Referência3 15: Seleção Tempo ACC/DEC 16:Pausa PID 17:Pausa da Operação Transversal 18: Reset da Operação Transversal 19: Rampa de ACC/DEC 20: Desabilita o Controle do Torque	7	•	55
P5.03	Função do Terminal S4	21: UP/DOWN invalido Temporariamente 22-25: Reservado	0	©	56
P5.04	Liga/desliga Tempo dos Filtros	1~10	5	0	57
P5.05	Modo de Controle do Sentido de Rotação	0: Modo1 de controle a 2 fios 1: Modo2 de controle a 2 fios 2: Modo1 de controle3 3: Modo3 de controle3	0	0	58
P5.06	Mudança da Taxa de Configuração UP/DOWN	0.01~50.00Hz/s	0.50 Hz/s	0	59
P5.07	Limite Baixo da Al1	0.00V~10.00V	0.00V	0	60
P5.08	Limite Baixo da Al1 Correspondente a Configuração	-100.0%~100.0%	0.0%	0	61
P5.09	Limite Alto da A1	0.00V~10.00V	10.00V	0	62

P5.10	Limite aAto da Al1 Correspondente a Configuração	-100.0%~100.0%	100.0%	0	63
P5.11	Tempo do Filtro Constante da Al1	0.00s~10.00s	0.10s	0	64
P5.12	Limite Baixo da Al2	0.00V~10.00V	0.00V	0	65
P5.13	Limite Baixo da Al2 Correspondente a Configuração	-100.0%~100.0%	0.0%	0	66
P5.14	Limite Alto da A2	0.00V~10.00V	10.00V	Ο	67
P5.15	Limite Alto da Al2 Correspondente a Configuração	-100.0%~100.0%	100.0%	0	68
P5.16	Tempo do Filtro Constante da Al2	0.00s~10.00s	0.10s	0	69
P6 Grupo:	: Terminais de Saída				
P6.00	Seleção da Saída Y	0: Sem Saída 1: Motor Girando no Sentido Horário 2: Motor Girando Sentido Anti-Horário 3: Saída de Falha 4: FDT Alcançado	1	0	70
P6.01	Seleção do Relé de Saída	5: Freqüência Alcançada 6: Funcionamento em Velocidade Anula 7: Limite Alto de Freqüência Alcançado 8: Limite Baixo de Freqüência Alcançado 9~10: Reservado	3	0	71
P6.02	Seleção da AO	0:Freqüência atual 1: Freqüência de Referência 2: Velocidade do Motor 3: Saída de Corrente 4: Tensão de Saída 5: Potência de Saída 6: Saída de Torque 7:Al1 Tensão 8: Al2 Tensão/ Corrente 9~10: Reservado	0	0	72
P6.03	Limite Baixo da AO	0.0%~100.0%	0.0%	0	73
P6.04	Limite Baixo AO Correspondente a Saída	0.00V ~10.00%	0.00V	0	74

Lista das Funções dos Parâmetros

P6.05	Limite Alto da AO	0.0%~100.0%	100.0%	0	75
P6.06	Limite Alto AO Correspondente a Saída	0.00V ~10.00V	10.00V	0	76
Grupo P7	: ІНМ				
P7.00	Password	0~65535	0	0	77
P7.01	Seleção da Língua	0:Chinês 1: Inglês	0	0	78
P7.02	Copiar os Parâmetros	0:Inválido 1: Upload do Inversor 2: Download para o Inversor	0	0	79
P7.03	Seleção da Função QUICK/JOG	0:JOG 1: Sentido de Rotação 2: Limpa a Configuração UP/Down	0	•	80
P7.04	Função da Opção STOP/RST	O: Válido quando o Parâmetro P0.01=0 1: Válido quando o Parâmetro P0.01=0 ou a entrada de controle for igual a 1. 2: Válido quando o parâmetro P0.01=0 ou o controle de comunicação for igual a 2. 4=Sempre válido	0	0	81
P7.05	Seleção IHM	0: Preferencialmente a IHM Externa 1: Funciona as 2 IHM's, Porém Somente a IHM Externa é Válida. 2:Funciona as 2 IHM's, Porém Somente a IHM Local é Valida 3:Funciona as e as 2 IHM's são Válidas.	0	0	82
P7.06	Seleção do Estado do Display com o Inversor em Trabalho	0~0X7FFF BITO: Frequência de Saída BIT1: Referência de Frequência BIT2: Tensão do Barramento DC BIT3: Tensão de Saída BIT4: Corrente de Saída BIT5: Velocidade de Rotação BIT6: Potência de Saída BIT7: Torque de Saída BIT7: Torque de Saída BIT8: Preset PID BIT9: Realimentação PID BIT10: Estado do Terminal de Entrada BIT11: Estado do Terminal de Saída BIT12: Al1 BIT13: Al2 BIT14: N° do Passo da Função Mult-Speed BIT15: Reservado	0XFF	0	83

1		T			
P7.07	Seleção do Parâmetro Mostrado no Display com o Inversor em Stop	0~0X1FF BIT0: Referência de Frequência BIT1: Tensão do Barramento DC BIT2: Estado do Terminal de Entrada BIT3: Estado do Terminal de Saída BIT4: Presset PID BIT5: Realimentação PID BIT6: Al1 BIT7: Al2 BIT8: N° do Passo da Função Mult-Speed BIT9~15: Reserved	0xFF	0	84
P7.08	Temperatura do Modulo Retificador	0~100.0□		•	85
P7.09	Temperatura do Modulo IGBT	0~100.0□		•	86
P7.10	Versão do Software			•	87
P7.11	Tempo Acumulado de Funcionamento	0~65535h		•	88
P7.12	3º Ultima Falha	0: Em Falhas 1: Falha IGBT Fase-U (OUT1) 2: Falha IGBT Fase-V(OUT2) 3: Falha IGBT Fase-W(OUT3) 4: Sobre Corrente Durante a Aceleração(OC1) 5: Sobre Corrente Durante a Desaceleração(OC2) 6: Sobre Corrente Durante Regime Constante de Velocidade (OC3)		•	89
P7.13	Penúltima Falha	7: Sobre Tensão Durante a Aceleração(OV1) 8: Sobre Tensão Durante a Desaceleração(OV2) 9: Sobre Tensão Durante Regime Constante de Velocidade (OV3) 10: Sub-Tensão no Barramento DC(UV) 11: Sobrecarga no Motor (OL1) 12: Sobrecarga no Inversor (OL2) 13: Falta de Fase na Entrada (SPI) 14: Falta de Fase na Saída(SPO) 15: Sobre Aquecimento no Retificador (OH1) 16: Sobre Aquecimento no IGBT (OH2) 17: Falha Externa (EF) 18: Falha na Comunicação (CE) 19: Detecção de Falha de Corrente(ITE)		•	90

P7.14	Falha Corrente	20: Falha de Auto-Ajuste (TE) 21: Falha na EEPROM (EEP) 22: Falha na Realimentação do PID (PIDE) 23: Falha na Unidade de Frenagem (BCE) 24: Reservado		•	91
P7.15	Freqüência de Saída no Momento da Falha	Frequencia de Saida no Momento da Falha.		•	92
P7.16	Corrente de Saída no Momento da Falha	Corrente de Saida no Momento da Falha.		•	93
P7.17	Voltagem do Barramento DC no Momento da falha	Voltagem do Barramento DC no Momento da Falha.		•	94
P7.18	Estado dos Terminais de Entrada no Momento da Falha	BIT3 BIT2 BIT1 BIT0 S4 S3 S2 S1		•	95
P7.19	Estado dos Terminais de Saída no Momento da Falha	BIT3 BIT2 BIT1 BIT0 R0 Y		•	96
Grupo P8	3: Funções de Aperfei	çoamento			
P8.00	Tempo de Aceleração1	0.1~3600.0s	Depende do modelo	0	97
P8.01	Tempo de Desaceleração1	0.1~3600.0s	Depende do modelo	0	98
P8.02	Referência de JOG	0.00~P0.04	5.00Hz	0	99
P8.03	Tempo de Aceleração JOG	0.1~3600.0s	Depende do modelo	0	100
P8.04	Tempo de Desaceleração JOG	0.1~3600.0s	Depende do modelo	0	101
P8.05	Freqüência de Salto	0.00~P0.04	0.00Hz	0	102

P8.06	Largura da Banda de Freqüência de Salto	0.00~P0.04	0.00Hz	0	103			
P8.07	Amplitude Transversal	0.0~100.0%	0.0%	0	104			
P8.08	Ocilação da Freqüência	0.0~50.0%	0.0%	0	105			
P8.09	Aumento do tempo de passagem	0.1~3600.0s	5.0s	0	106			
P8.10	Queda do tempo de passagem	0.1~3600.0s	5.0s	0	107			
P8.11	Tempo para Auto Reset	0~3	0	0	108			
P8.12	Intervalo entre Reset	0.1~100.0s	1.0s	0	109			
P8.13	Nivel FDT	0.00~ P0.04	50.00Hz	0	110			
P8.14	Atraso FDT	0.0~100.0%	5.0%	0	111			
P8.15	Range de detecção de freqüência	0.0∼100.0%⊡Maxima Frequencia⊡	0.0%	0	112			
P8.16	Tensão de Disparo de Frenagem	115.0~140.0%	Depende do modelo	0	113			
P8.17	Coeficiente de Velocidade de Rotação	0.1~999.9%	100.0%	0	114			
Grupo P9: Controle PID								
P9.00	Seleção do Presset do PID	0: Keypad 1: Al1 2: Al2 3: Comunicação 4: Multi-Speed	0	0	115			
P9.01	Presset do PID pela IHM	0.0%~100.0%	0.0%	0	116			

P9.02	Seleção de Realimentação do PID	0: Al1 1: Al2 2: Al1+Al2 3: Comunicação	0	0	117				
P9.03	Características da Saída do PID	0: Positive 1: Negative	0	0	118				
P9.04	Ganho Proporcional (Kp)	0.00~100.00	1.00	0	119				
P9.05	Tempo Integral (Ti)	0.01~10.00s	0.10s	0	120				
P9.06	Tempo Diferencial (Td)	0.00~10.00s	0.00s	0	121				
P9.07	Tempo de Amostragem (T)	0.01~100.00s	0.10s	0	122				
P9.08	Limite de bias	0.0~100.0%	0.0%	0	123				
P9.09	Valor de Detecção de Perda da Realimentação	0.0~100.0%	0.0%	0	124				
P9.10	Tempo de Detecção de Perda da Realimentação	0.0~3600.0s	1.0s	0	125				
Grupo PA: Controle Multi-Speed									
PA.00	Multi-Speed 0	-100.0~100.0%	0.0%	0	126				
PA.01	Multi-Speed 1	-100.0~100.0%	0.0%	0	127				
PA.02	Multi-Speed 2	-100.0~100.0%	0.0%	0	128				
PA.03	Multi-Speed 3	-100.0~100.0%	0.0%	0	129				
PA.04	Multi-Speed 4	-100.0~100.0%	0.0%	0	130				
PA.05	Multi-Speed 5	-100.0~100.0%	0.0%	0	131				
PA.06	Multi-Speed 6	-100.0~100.0%	0.0%	0	132				
PA.07	Multi-Speed 7	-100.0~100.0%	0.0%	0	133				
Grupo PE	Grupo PB: Funções de Proteção								
PB.00	Proteção de Sobrecarga do Motor	0: Desabilitado 1: Normal motor 2: Variar a frequencia do motor.	2	0	134				
PB.01	Proteção de Sobrecarga de Corrente no Motor	20.0%~120.0%	100.0%	0	135				

PB.02	Disparo para Funcionamento do Motor por Inércia	70.0~110.0%	80.0%	0	136
PB.03	Taxa de Redução para Funcionamento do Motor por Inércia	0.00Hz~P0.04	0.00Hz	0	137
PB.04	Proteção Contra sobre Carga de Parada	0: Desabilitado 1: Habilitado	0	0	138
PB.05	Ponto de proteção contra sobre carga na Parada	110~150%	Depende do modelo	0	139
PB.06	Disparo do Limite Alto de Corrente	50~200%	G:160% P:120%	0	140
PB.07	Taxa de Redução de Freqüência Quando o Limite de Corrente é Alcançado	0.00~100.00Hz/s	10.00 Hz/s	0	141
Grupo PC	: Comunicação Serial				
PC.00	Endereço Local	0~247	1	0	142
PC.01	Seleção Baud Rate	0: 1200BPS 1: 2400BPS 2: 4800BPS 3: 9600BPS 4: 19200BPS 5: 38400BPS	3	0	143
PC.02	Formato do Dado	0: RTU, 1 start bit, 8 data bits, no parity check, 1 stop bit. 1: RTU, 1 start bit, 8 data bits, even parity check, 1 stop bit. 2: RTU, 1 start bit, 8 data bits, odd parity check, 1 stop bit. 3: RTU, 1 start bit, 8 data bits, no parity check, 2 stop bits. 4: RTU, 1 start bit, 8 data bits, even parity check, 2 stop bits. 4: RTU, 1 start bit, 8 data bits, even parity check, 2 stop bits. 5: RTU, 1 start bit, 8 data bits, odd parity check, 2 stop bits. 6: ASCII, 1 start bit, 7 data bits, no parity check, 1 stop bit. 7: ASCII, 1 start bit, 7 data bits, even parity check, 1 stop bit. 8: ASCII, 1 start bit, 7 data bits, no parity check, 1 stop bit. 9: ASCII, 1 start bit, 7 data bits, no parity check, 2 stop bits. 10: ASCII, 1 start bit, 7 data bits, no parity check, 2 stop bits.	0	0	144

		11: ASCII, 1 start bit, 7 data bits, odd parity check, 2 stop bits. 12: ASCII, 1 start bit, 8 data bits, no parity check, 1 stop bit. 13: ASCII, 1 start bit, 8 data bits, even parity check, 1 stop bit. 14: ASCII, 1 start bit, 8 data bits, odd parity check, 1 stop bit. 15: ASCII, 1 start bit, 8 data bits, no parity check, 2 stop bits. 16: ASCII, 1 start bit, 8 data bits, even parity check, 2 stop bits. 17: ASCII, 1 start bit, 8 data bits, even parity check, 2 stop bits.			
PC.03	Tempo de Atraso na Comunicação	0~200ms	5	0	145
PC.04	Tempo de Timeout da Comunicação	0.0: Desabilitado 0.1~100.0s	0.0s	0	146
PC.05	Ação em Caso de Erro na Comunicação	0:Alarme e Stop 1:Sem Alarme e Continua o Funcionamento 2:Sem Alarme mas para o Inversor de Acordo com P1.05(se P0.01=2) 3: Sem alarme, mas para de Acordo com P1.05	1	0	147
PC.06	Ação de Resposta	Local da Unidade do Led 0:Responde para Escrever 1:Não Responde para Escrever nos 10 Locais dos Led 0: Não Salva a Referencia Quando Desligado 1:Salva a Referencia Quando é Desligado	0	0	148
Grupo PD:	: Funções Suplementar	es			
PD.00	Baixa Freqüência de Limite de Restrição a Oscilação	0~500	5	0	149
PD.01	Alta Freqüência de Limite de Restrição a Oscilação	0~500	100	0	150
PD.02	Amplitude de Restrição a Oscilação	0~10000	5000	0	151
PD.03	Banda de Restrição a Ocilação	0.0~P0.04	12.5Hz	0	152

PD.04	Restrição a Oscilação	0:Habilitado 1:Desabilitado	0	0	153
PD.05	Modo PWM	0:PWM Modo 1 1:PWM Modo 2 3: PWM Modo 3	0	©	154
PD.06	Fonte de Configuração do Torque	0:IHM 1:Al1 2:Al2 3: Al1+Al2 4: Configuração Mult-Speed 5: Comunicação	0	0	155
PD.07	Configuração de Torque pela IHM	-100.0%~100.0%	0	0	156
PD.08	Seleção de Limite Alto de Freqüência	0:IHM(P0.05) 1:Al1 2:Al2 3: Al1+Al2 4:Configuração Mult-Speed 5: Comunicação	0	0	157
PD.09	Seleção Automática de Limite de Corrente	0:Habilitado 1:Desabilitado	0	0	158
Grupo PE	Grupo PE: Configuração de Fabrica				
PE.00	Password de fábrica	0~65535	****	•	159

Seção 13.01 9.1 Parâmetros Especias para Série de Inversores de Alta Velocidade CHE150

Código da Função	Nome	Descrição	Configuraç ão de Fabrica	Modific ar
Grupo P0:	Funções Básicas			
P0.04	Freqüência Máxima	10.00~1500.0Hz	1000.0Hz	©
P0.05	Limite Alto de Freqüência	P0.06~ P0.04	1000.0Hz	0
P0.07	Referência de Freqüência pela IHM	0.00 Hz ~ P0.04	1000.0Hz	0

Grupo P4:controle V/F					
P4.00	Seleção da Curva V/F	0:Curva Linear 1:Cuva Definida pelo Usuario 2:Curva de Torque StepDown(ordem 1.3) 3:Curva de Torque StepDown (ordem 1.7) 3:Curva de Torque StepDown (2.0)	0	0	
P4.03	Freqüência 1 V/F	0.0Hz ~ P4.05	100.0Hz	0	
P4.04	Tensão 1 V/F	0 ~ 100% (Tensão Característica do Motor)	10.0%	0	
P4.05	Freqüência 2 V/F	P4.03 ~ P4.07	600.0Hz	0	
P4.06	Tensão 2 V/F	0~100% (Tensão Característica do Motor)	60.0%	0	
P4.07	Freqüência 3 V/F	0~100% (Freqüência Característica do Motor)	1000.0Hz	0	
P4.08	Tensão 3 V/F	0~100% (Tensão Característica do Motor)	100.0%	0	
P4.09	Limite de Compensação de Escorregamento	0.00~200.0%	0.0%	0	
P4.10	Seleção de Modo Econômico de Energia	0:Desabilitado 1:Habilitado	0	0	

Seção 13.02

Seção 13.03 9.2 Parametros Mostrados na IHM (LCD)

Código da função	Nome	LCD Display
P0.00	Seleção do Modo de Controle	CONTROL MODE
P0.01	Fonte de Comandos para Funcionamento	RUN COMMAND
P0.02	Configuração Teclas UP/DOWN	UP/DOWN SETTING
P0.03	Referência de Velocidade A	FREQ SOURCE A
P0.04	Freqüência Máxima	MAX FREQ
P0.05	Limite Alto de Frêqüência	UP FREQ LIMIT
P0.06	Limite Baixo de Freqüência	LOW FREQ LIMIT
P0.07	Referência de Frequência da IHM	KEYPAD REF FREQ
P0.08	Tempo de Aceleração 0	ACC TIME 0

Código da função	Nome	LCD Display
P0.09	Tempo de Desaceleração 0	DEC TIME 0
P0.10	Seleção da Direção de Funcionamento	RUN DIRECTION
P0.11	Freqüência Portadora	CARRIER FREQ
P0.12	Parâmetros de Auto-Ajuste do Motor	AUTOTUNING
P0.13	Restaurar Parâmetros	RESTORE
P0.14	Função AVR	AVR
P1.00	Modo de Partida	START MODE
P1.01	Freqüência de Partida	START FREQ
P1.02	Tempo de Permanência da Freqüência de Partida	HOLD TIME
P1.03	Corrente de Frenagem DC antes da Partida	START BRAK CURR
P1.04	Tempo de Frenagem DC antes da Partida	START BRAK TIME
P1.05	Modo de Parada	STOP MODE
P1.06	Freqüência para Partida do Freio DC	STOP BRAK FREQ
P1.07	Tempo de Espera Antes da Parada DC	STOP BRAK DELAY
P1.08	Corrente de Frenagem DC	STOP BRAK CURR
P1.09	Tempo de Frenagem DC	STOP BRAK TIME
P1.10	Tempo de Zona Morta entre a Reversão do Motor	FWD/REV DEADTIME
P1.11	Habilitar a Reversão Quando o Inversor está em Funcionamento	FWD/REV ENABLE
P1.12	Reservado	RESERVED
P2.00	Opção G/P	G/P OPTION
P2.01	Potência do Motor	MOTOR RATE POWER
P2.02	Freqüência do Motor	MOTOR RATE FREQ
P2.03	RPM do Motor	MOTOR RATE SPEED
P2.04	Tensão do Motor	MOTOR RATE VOLT
P2.05	Corrente do Motor	MOTOR RATE CURR
P2.06	Resistência do Estator do Motor	STATOR RESISTOR

Código da função	Nome	LCD Display
P2.07	Resistência do Rotor do Motor	ROTOR RESISTOR
P2.08	Indutância de Fulga do Motor	LEAK INDUCTOR
P2.09	Indutância Mutua do Motor	MUTUAL INDUCTOR
P2.10	Corrente do Motor sem Carga	NO LOAD CURR
P3.00	Ganho Proporcional KP1 ASR	ASR Kp1
P3.01	Tempo Integral KI1 ASR	ASR Ki1
P3.02	Chaveamento no Ponto1 ASR	ASR SWITCHPOINT1
P3.03	Ganho Proporcional KP2 ASR	ASR Kp2
P3.04	Tempo Integral KI2 ASR	ASR Ki2
P3.05	Chaveamento no Ponto2 ASR	ASR SWITCHPOINT2
P3.06	Compensação de Escorregamento	VC SLIP COMP
P3.07	Limite de Torque	TORQUE LIMIT
P4.00	Seleção da Curva V/F	V/F CURVE
P4.01	Otimização do Torque	TORQUE BOOST
P4.02	Interrupção da Otimização do Torque	BOOST CUT-OFF
P4.03	Limite de Compensação de Escorregamento V/F	SLIP COMP LIMIT
P4.04	Seleção do Modo Econômico de Energia Automático	ENERGY SAVING
P4.05	Reservado	RESERVED
P5.00	Função do Terminal S1	S1 FUNCTION
P5.01	Função do Terminal S2	S2 FUNCTION
P5.02	Função do Terminal S3	S3 FUNCTION
P5.03	Função do Terminal S4	S4 FUNCTION
P5.04	Liga/Desliga Tempo dos Filtros	Sx FILTER TIMES
P5.05	Modo de Controle do Sentido de Rotação	FWD/REV CONTROL
P5.06	Mudança da Taxa de Configuração UP/DOWN	UP/DOWN RATE
P5.07	Limite Baixo da Al1	AI1 LOW LIMIT

Código da função	Nome	LCD Display
P5.08	Limite Baixo da Al1 Correspondente a Configuração	AI1 LOW SETTING
P5.09	Limite Alto da A1	AI1 UP LIMIT
P5.10	Limite alto da Al1 Correspondente a Configuração	AI1 UP SETTING
P5.11	Tempo do Filtro Constante da Al1	AI1 FILTER TIME
P5.12	Limite Baixo da Al2	AI2 LOW LIMIT
P5.13	Limite Baixo da Al2 Correspondente a Configuração	AI2 LOW SETTING
P5.14	Limite Alto da A2	AI2 UP LIMIT
P5.15	Limite Alto da Al2 Correspondente a Configuração	AI2 UP SETTING
P5.16	Tempo do Filtro Constante da Al2	AI2 FILTER TIME
P6.00	Seleção da Saida Y	Y SELECTION
P6.01	Seleção do Relé de Saída	RO SELECTION
P6.02	Seleção da AO	AO SELECTION
P6.03	Limite Baixo da AO	AO LOW LIMIT
P6.04	Limite Baixo AO Correspondente a Saída	AO LOW OUTPUT
P6.05	Limite Alto da AO	AO UP LIMIT
P6.06	Limite alto AO Correspondente a Saída	AO UP OUTPUT
P7.00	Password	USER PASSWORD
P7.01	Seleção da Lingua	LANGUAGE SELECT
P7.02	Copiar os Parâmetros	PARA COPY
P7.03	seleção da função QUICK/JOG	QUICK/JOG FUNC
P7.04	função da opção STOP/RST	STOP/RST FUNC
P7.05	Seleção IHM	KEYPAD DISPLAY
P7.06	Seleção do Estado do Display com o Inversor em Trabalho	RUNNING DISPLAY
P7.07	Seleção do Estado do Display com o Inversor Parado	STOP DISPLAY

Código da função	Nome	LCD Display
P7.08	Temperatura do Modulo Retificador	RECTIFIER TEMP
P7.09	Temperatura do Modulo IGBT	IGBT TEMP
P7.10	Versão do Software	SOFTWARE VERSION
P7.11	Tempo Acumulado de Funcionamento	TOTAL RUN TIME
P7.12	3º Última Falha	3rd LATEST FAULT
P7.13	Penúltima Falha	2nd LATEST FAULT
P7.14	Falha Corrente	CURRENT FAULT
P7.15	Freqüência de Saída no Momento da Falha	FAULT FREQ
P7.16	Corrente de Saída no Momento da Falha	FAULT CURR
P7.17	Voltagem do Barramento DC no Momento da Falha	FAULT DC VOLT
P7.18	Estado dos Terminais de Entrada no Momento da Falha	FAULT Sx STATUS
P7.19	Estado dos Terminais de Saída no Momento da Falha	FAULT DO STATUS
P8.00	Tempo de Aceleração1	ACC TIME 1
P8.01	Tempo de Desaceleração1	DEC TIME 1
P8.02	Referência de JOG	JOG REF
P8.03	Tempo de Aceleração JOG	JOG ACC TIME
P8.04	Tempo de Desaceleração JOG	JOG DEC TIME
P8.05	Freqüência de Salto	SKIP FREQ
P8.06	Largura da Banda de Freqüência de Salto	SKIP FREQ RANGE
P8.07	Amplitude Transversal	TRAV AMPLITUDE
P8.08	Freqüência Oscilante	JITTER FREQ
P8.09	Tempo de Subida Transversal	TRAV RISE TIME
P8.10	Tempo de Descida Transversal	TRAV FALL TIME
P8.11	Tempo para Auto Reset	AUTO RESET TIMES
P8.12	Intervalo entre Reset	RESET INTERVAL

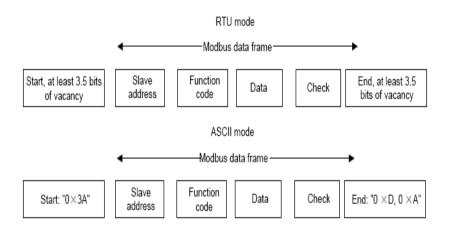
Código da função	Nome	LCD Display
P8.13	Nivel FDT	FDT LEVEL
P8.14	Atraso FDT	FDT LAG
P8.15	Range de Detecção de Freqüência	FAR RANGE
P8.16	Tensão de Disparo de Frenagem	BRAK VOLT
P8.17	Coeficiente de Velocidade de Rotação	SPEED RATIO
P9.00	Seleção do Presset do PID	PID PRESET
P9.01	Presset do PID pela IHM	KEYPAD PID SET
P9.02	Seleção de Realimentação do PID	PID FEEDBACK
P9.03	Características da Saída do PID	PID OUTPUT
P9.04	Ganho Proporcional (Kp)	PROPORTION GAIN
P9.05	Tempo Integral (Ti)	INTEGRAL TIME
P9.06	Tempo Diferencial (Td)	DIFFERENTIA TIME
P9.07	Tempo de Amostragem (T)	SAMPLING CYCLE
P9.08	Limite de Bias	BIAS LIMIT
P9.09	Valor de Detecção de Perda da Realimentação	FEEDBACK LOST
P9.10	Tempo de Detecção de Perda da Realimentação	FEEDBACK LOST(t)
PA.00	Multi-Speed 0	MULTI-SPEED 0
PA.01	Multi-Speed 1	MULTI-SPEED 1
PA.02	Multi-Speed 2	MULTI-SPEED 2
PA.03	Multi-Speed 3	MULTI-SPEED 3
PA.04	Multi-Speed 4	MULTI-SPEED 4
PA.05	Multi-Speed 5	MULTI-SPEED 5
PA.06	Multi-Speed 6	MULTI-SPEED 6
PA.07	Multi-Speed 7	MULTI-SPEED 7
PB.00	Proteção de Sobrecarga do Motor	MOTOR OVERLOAD

Código da função	Nome	LCD Display
PB.01	Proteção de Sobrecarga de Corrente no Motor	OVERLOAD CURR
PB.02	Disparo para Funcionamento do Motor por Inércia	TRIPFREE POINT
PB.03	Taxa de Redução para Funcionamento do Motor por Inércia	TRIPFREE DECRATE
PB.04	Proteção Contra sobre Carga de Parada	OVER VOLT STALL
PB.05	Ponto de Proteção contra sobre Carga de Parada	OV PROTECT POINT
PB.06	Disparo do Limite Alto de Corrente	CURR LIMIT POINT
PB.07	Taxa de Redução de Freqüência quando o Limite de Corrente é Alcançado	FREQ DEC RATE
PC.00	Endereço Local	LOCAL ADDRESS
PC.01	Seleção Baud Rate	BAUD RATE
PC.02	Formato do Dado	DATA FORMAT
PC.03	Tempo de Atraso na Comunicação	COM DELAY TIME
PC.04	Tempo de Timeout da Comunicação	COM TIMEOUT
PC.05	Ação em Caso de erro na Comunicação	COM ERR ACTION
PC.06	Ação de Resposta	RESPONSE ACTION
PD.00	Alta Freqüência de Limite de Restrição a Oscilação	RES OSC L POINT
PD.01	Amplitude de Restrição a Oscilação	RES OSC H POINT
PD.02	Banda de Restrição a Ocilação	RES OSC AMP
PD.03	Restrição a Oscilação	RES OSC BOUND
PD.04	Modo PWM	RES OSC ENABLE
PD.05	Fonte de Configuração do Torque	PWM MODE
PD.06	Configuração de Torque pela IHM	TORQ SOURCE
PD.07	Seleção de Limite alto de Freqüência	KEYPAD TORQ SET
PD.08	Seleção Automática de Limite de Corrente	UP FREQ SOURCE
PD.09	Seleção Automática de Limite de Corrente	CURR LIMIT SEL
PE.00	Password de Fábrica	FACTORY PASSWORD

Artigo XIV. 10. Protocolo de Comunicação

10.1 Interfaces

RS-485: assincrono, Half-Duplex.


Padrão: 8-E-1, 19200bps. Veja Grupo PC parâmetros de configuração.

10.2 Modos de Comunicação

- 10.2.1 O protocolo é Modbus. Além disso as operações comuns de escrita/leitura de registros, possuem comandos do gerenciador de parâmetros.
- 10.2.2 O drive é um escravo na linha de trabalho. A comunicação é ponto a ponto modo mestre/escravo. O inversor não responderá o comando enviado pelo mestre via endereço de transmisão.
- 10.2.3 No caso de comunicação multi-drive ou transmição a longa distância, conectar um resistor 100~120ohms em paralelo com linha de sinal do mestre, isso contribuirá na imunidade a interferência.

10.3 Formato do Protocolo

Protocolo modbus suporta junto modo RTU e ASCII.O formato é ilustrado a seguir:

O modbus adota representação "Big Endian" para a moldura de quadros. Isso significa que quando uma quantidade numérica maior que um byte é transmitido, o byte mais significativo é transmitido primeiro.

Modo RTU

Em modo RTU, o mínimo tempo ocioso Modbus entre os quadros não deve ser menor que 3.5 bytes. O checksum adotado é o metodo CRC-1. Todos os dados exceto o próprio checksum enviados serão envolvidos no cálculo. Por favor consulte a seção: Cheque o CRC para mais informações. Observe que o mínimo de 3.5bytes do tempo ocioso do modbus deve ser mantido, o tempo ocioso inicial e final não precisam ser somado.

A tabela abaixo apresenta o quadro de dados de leitura do parâmetro 002 do endereço do nó1 escravo.

Endereço do nó.	Comando		reço do Ido.	NºIi	ido.	CI	RC
0x01	0x03	0x00	0x02	0x00	0x01	0x25	0xCA

A tabela abaixo apresenta o quadro de resposta do endereço do nó 1 escravo.

Endereço do nó.	Comando	N [≗] dos bytes.	Dado		CF	RC
0x01	0x03	0x02	0x00	0x00	0xB8	0x44

Modo ASCII

Em modo ASCII, o cabeçalho é "0X3A", e rodapé padrão é "0X0D" ou "0X0A" . O rodapé pode ser configurado pelo usuário. Exceto o cabeçalho e o rodapé, serão enviados em dois caracteres ASCII, primero ele envia o dado alto depois o baixo. O dado tem 7/8 bits. "A"~"F" corresponde para o código ASCII as letras miúscula. Checagem LRC é usado . LRC é calculado pela adição de todos os bytes sucessivos da mensagem exceto o cabeçcalho e o rodapé, descartando algum carregado e o resultado de complemento de dois.

Exemplo do quadro de dados modbus em modo ASCII:

O quadro de comando da escrita 0X0003 dentro do endereço 0X1000 do endereço1 do nó escravo é mostrado na tabela abaixo:

LRC checksum = O complemento de (01+06+10+00+0x00+0x03) = 0xE5

	Ca	abeçalho	Endereço do Nó.		Coma	ındo	Er	idereço	do Dad	0.
Code	е		0	1	0	6	1	0	0	0
ASC	II	3A	3	31	30	36	31	30	30	30
			0							
Dado para Escrita			LR	С		Rod	apé			
0	0	0		3	Е	5	CR LF		_F	
30	30	30		33	45	35	C	D	()A

10.4 Função do Protocolo

Diferentes atrasos na resposta podem ser configurados através dos parámetros do drive para se adptar para diferentes necessidades. Para modo RTU, o atraso na resposta não deve ter um intervalo menor que 3.5bytes e para modo ASCII não deve ser menor que 1ms.

O função principal do modbus é leitura e escrita de parâmetros.O protoclo modbus suporta os seguintes comandos:

0x03	Lê o parâmetro da função do inversor e o estado do parâmetro
0x06	Escreva uma única função no parâmetro ou parâmetro de comando no inversor

Todas funções dos parâmetros do drive, controle e parâmetros de estado são mapeados para endereço do dado R/W modbus.

Para obter o dado do endereçamento de cada função dos parâmetros por favor consulte a sexta coluna do capitulo 9.

Para obter o dado do endereçamento de controle e parametros de estado por favor consulte a seguinte tabela.

Descrição do Parâmetro	Endereço	Significado do Valor	R/W Feature
		0001H: Horário	
		0002H: Anti-Horário	
		0003H: JOG Horário	
Comando de	1000H	0004H: JOG Anti-Horário	W/R
Controle	1000H	0005H: Parada	
		0006H: Coast to Stop	
		0007H: Reset de Falhas	
		0008H: JOG Parada	
		0001H: Funcionamento Horário	
Estado do Inversor	1001H	0002H: Funcionamento Anti-Horário	R
	10010	0003H: Standby	r.
		0004H: Falha	

Configuração de Comunicação	2000Н	Configuração do range de comunicação(-10000~10000) Observação: A configuração da comunicação é a porcetagem do valor relativo(-100.00%~100.00%). Se é configurado como fonte de freqüência, o valor é a porcentagem da freqüência máxima(P0.04). Se está configurado como PID (valor do presset ou valor da realimentação), o valor é a porcentagem do PID.	W/R
	3000H	Freqüência de Saída	R
	3001H	Referência de Freqüência	R
	3002H	Tensão do Barramento DC	R
	3003H	Tensão de Saída	R
	3004H	Corrente de Saída	R
<u> </u>	3005H	Velocidade de Rotação	R
	3006H	Potência de Saída	R
	3007H	Torque de Saída	R
	3008H	Valor de Presset do PID	R
	3009H	Valor de Realimentação do PID	R
Parâmetros de	300AH	Estado do Terminal de Entrada	R
Estado	300BH	Estado do Terminal de Saída	R
	300CH	Valor da Al1	R
	300DH	Valor da Al2	R
	300EH	Reservado	R
	300FH	Reservado	R
	3010H	Freqüência HDI	R
	3011H	Reservado	R
	3012H	Nº do PLC ou Multi-Speed	R
	3013H	Comprimento do Valor	R
	3014H	Entrada Externa do Contador	R
	3015H	Reservado	R
	3016H	Código do Dispositivo	R

Endereço de Informação de Falhas	5000H	Esse endereço restaura o tipo de falha do inversor. O significado de cada valor é o mesmo como P7.15	R
Endereço de Informação de Falhas na Comunicação Modbus	5001H	0000H: Sem Falhas 0001H: Password Errado 0002H: Erro do Código de Comando 0003H: Erro CRC 0004H: Endereço Inválido 0005H: Dado Inválido 0006H: Mudança de Parâmetro Inválido 0007H: Sistema de Travamento 0008H: Ocupado (restaurando EEPROM)	R

A tabela acima apresenta o formato dos quadros. Agora nós vamos apresentar os comandos modbus e estrutura de dados em datalhes, no qual é chamado unidade de protocolo de dado simplificado. Também MSB (most significant byte-byte mais significante) e LSB (least significant byte -byte menos significante) pelo mesmo motivo. A descrição abaixo é o formato do dado em modo RTU. O comprimento da unidade do dado em modo ASCII deve ser dobrada.

Unidade do protocolo de dados de leitura dos parâmetros:

Formato requerido:

Unidade de Protocolo de Dados	Comprimento dos Dados(bytes)	Range
Comando	1	0x03
Endereço do Dado	2	0~0xFFFF
Número da Leitura	2	0x0001~0x0010

Formato da resposta(sucedida):

Unidade de Protocolo de Dados	Comprimento dos Dados(bytes)	Range
Comando	1	0x03
Número do Byte Retornado	2	2* Número de leitura
Conteúdo	2* Read Number	

Se o comando está lendo o tipo do inversor (endereço do dado0X3016), o conteúdo do valor na mensagem de resposta é o código do dispositivo:

O bit 8 alto do código do dispositivo é o tipo do inversor e o bit8 baixo do código do dispositivo é o sub- tipodo inversor.

Para detalhes, por favor consulte a seguinte table:

Byte Alto	Modelo	Byte Baixo	Caracteristica
		01	Tipo Universal
		00	Para Fonecimento
		02	de Agua
00	CHV	03	Freqüência Média
		03	1500HZ
			Freqüência Média
		04	3000HZ
		01	Tipo Universal
01	CHE	02	Freqüência Média
		02	1500HZ
02	CHF	01	Tipo Universal

Se falhar a operação, o inversor responderá um formato de mensagem para um comando de falha e um código de erro. O comando de falha(comando+0X80). O código de erro indica a razão do erro, veja a tabela abaixo:

Valor	Nome	Significado
01H	Comando Ilegal	O comando do mestre não pode ser executado. A razão provável: 1. Esse comando é somente para nova versão e nessa versão não pode ser realizada. 2.O escravo está em estado de falha e não pode executá-lo.
02H	Endereço do Dado Ilegal.	Alguns endereços de operações são inválidos ou não reconhecidos para acesso.
03H	Valor Ilegal	Quando existem dados inválidos no quadro da mensagem recebida pelo escravo. Observação: esse código de erro não indica o valor do dado para escrita exedida ao range, mas indica que o quadro da mensagem é um quadro ilegal.
06H	Escravo Ocupado	O inversor está ocupado (restaurando EEPROM)
10H	Erro de Password	O password escrito para o endereço de checagem do password não é o mesmo do password configurado pelo P7.00
11H	Checagem de Erro	O CRC(modo RTU) ou LRC(modo ASCII) checagem de aprovação.

12H	Escrita não Permitida.	Somente acontece em comando de escrita, a razão pode ser: 1. O dado para escrita exede o range de acordo com o parâmetro 2. O parâmetro não deve ser modificado agora 3. O terminal já está sendo usado
13H	Sistema de Travamento	Quando a proteção do password é ativada e o usuário não destrava a função do parâmetro a função de escrita /leitura retornará esse erro.

Formato da unidade de dado do protocolo do parâmetro somente de escrita:

Formato requerido:

Unidade de dado do protocolo	Comprimento do dado(bytes)	Range
Comando	1	0x06
Endereço do Dado	2	0~0xFFFF
Conteúdo da Escrita	2	0~0xFFFF

Formato da Resposta:(sucedida):

Unidade de dado do protocolo	Comprimento do dado(bytes)	Range
Comando	1	0x06
Endereço do Dado	2	0~0xFFFF
Conteúdo da Escrita	2	0~0xFFFF

Se há falhas na operação, o inversor responderá o formato da mensagem pelo comando de falha e erro do código. O comando de falha é (Comando+0X80). O código de erro indica a razão do erro; veja tabela1.

10.5 Nota:

- 10.5.1 Entre os quadros, o período não deve ser menor que 3.5 bytes, de outra forma a mensagem seria descartada.
- 10.5.2 Seja cuidadoso ao modificar os parâmetros do grupo PC através da comunicação, de outra forma pode causar interrupção na comunicação.
- 10.5.3 No mesmo quadro, se o período entre os dois bytes próximos for maior que 1.5 byte, os bytes anteriores serão assumidos como partida da próxima mensagem, sendo assim a comunicação falhará.

10.6 Checagem CRC

```
Para alta velocidade , use a tabela CRC. O seguinte código fonte em linguagem C é usado para CRC-16.

unsigned int crc_cal_value(unsigned char *data_value,unsigned char data_length) {

int i;

unsigned int crc_value=0xffff;

while(data_length--) {

crc_value^=*data_value++;

for(i=0;i<8;i++)

{

if(crc_value&0x0001)crc_value=(crc_value>>1)^0xa001;

else crc_value=crc_value>>1;

}

return(crc_value);
```

10.7 Exemplo

10.7.1 Modo RTU, leitura de dois lados do 0004H

O comando Requerido é:

Partida	T1-T2-T3-T4 (tempo de transmissão de 3.5 bytes)
Endereço do Nó	01H
Comando	03H
Byte Alto do Endereço de Partida	00Н
Byte Baixo do Endereço de Partida	04H
Byte Alto Endereço do Número do Dado	00Н
Byte Baixo do Endereço do Número do Dado	02H
Byte Baixo do CRC	85H
Byte Alto do CRC	САН
END	T1-T2-T3-T4(tempo de trasmição de 3.5bytes)

A resposta é :

Partida	T1-T2-T3-T4 (transmission time of 3.5 bytes)
Endereço do Nó	01H
Comando	03Н
Byte Alto do Endereço de Partida	04H
Byte Alto de 0004H	00H
Byte Baixo de 0004H	00H
Byte Alto de 0005H	00Н
Byte Baixo de 0005H	00H
Byte Baixo do CRC	43H
Byte Alto do CRC	07H
END	T1-T2-T3-T4 (tempo de trasmição de 3.5bytes)

10.7.2 Modo ASCII, leitura de dados do 0004H

O comando Requerido é:

ω ·
'0'
'1'
'0'
·3·
·O'
·O'
,0,
'4'
,0,
·O'
,0,
'2'
'F'
·6'
CR
LF

A resposta é

Partida	· ·
Endereço do Nó	,0,
Lildereço do 140	'1'
Comando	'0'
Comando	,3,
Número do Byte Retornado	'0'
Numero de Byte Neternado	'4'
Byte Alto do 0004H	'0'
Dyto 7 iilo do ooo ii i	'0'
Byte Baixo do 0004H	'0'
Dyto Baixe de eee ii i	'0'
Byte Alto do 0005H	'0'
Byte 7 lite do 000011	'0'
Byte Baixo do 0005H	'0'
Dyto Baine de eccerr	'0'
LRC CHK Lo	'F'
LRC CHK Hi	'8'
END Lo	CR
END Hi	LF

10.7.3 Modo RTU, escrita (1388H) endereço 0008H, endereço 02 nó escravo.

O comando Requerido é:

O comando requendo e.	.
Partida	T1-T2-T3-T4 (tempo de transmissão de 3.5 bytes)
Endereço do Nó	02H
Comando	06H
Byte Alto do end. de Partida	00H
Byte Baixo do end. de Partida	08H
Byte Alto end. do Número do Dado	13H
Byte Baixo do end. do Número do Dado	88H
Byte Baixo do CRC	05H
Byte Alto do CRC	6DH
END	T1-T2-T3-T4(tempo de trasmição de 3.5bytes)

Modo ASCII, escrito(5000)

Partida	T1-T2-T3-T4 (tempo de transmissão 3.5 bytes)
Endereço do Nó	02H
Comando	06Н
Byte Alto do end. de Partida	00Н
Byte Baixo do end. de Partida	08H
Byte Alto end. do número do Dado	13H
Byte Baixo do end. do número do Dado	88H
Byte Baixo do CRC	05H
Byte Alto do CRC	6DH
END	T1-T2-T3-T4(tempo de trasmição de 3.5bytes)

10.7.4 Modo ASCII, escrito 5000(1388H) endereço 0008H, endereço 2 nó escravo.

O comando é Requerido:

O comando e Requendo.	
Partida	.,,
Endereço do Nó	'0'
Endereço do No	'2'
Comando	,0,
	'6'
Byte Alto do Endereço do Dado	'0'
Byte Aito do Endereço do Bado	'0'
Byte Baixo do Endereço do Dado	,0,
Byte Balko do Endereço do Bado	'8'
Byte Alto do Conteúdo de Escrita	'1'
	·3·
Byte Baixo do Conteúdo de Escrita	'8'
	'8'
LRC CHK Hi	' 5'
LRC CHK Lo	'5'
END Lo	CR

END Hi	LF
O comando de Resposta é:	
Partida	6,7 •
Endereço do Nó	' 0'
Lildereço do No	'2'
Comando	' 0'
Comando	' 6'
Byte Alto do Endereço do Dado	' 0'
Byte Aito do Endereço do Bado	' 0'
Byte Baixo do Endereço do Dado	' 0'
Byte Baixo do Endereço do Bado	'8'
Byte Alto do Conteúdo de Escrita	'1'
Byte Aito do Conteddo de Escrita	'3'
Byte Baixo do Conteúdo de Escrita	'8'
	'8'
LRC CHK Hi	' 5'
LRC CHK Lo	' 5'
END Lo	CR
END Hi	LF