

CCyyPPrroo UUsseerr MMaannuuaall
rev. 33

(applies to CyPro v2.6.4 and later)

© 1998-2011 Cybrotech Ltd

Cybrotech Ltd
14 Brinell Way, Harfreys Industrial Estate
Great Yarmouth, Norfolk, Nr31 OLU - UK
tel: +44 (0)1157 149 991
www.cybrotech.co.uk
info@cybrotech.co.uk

Index • System overview

1

IInnddeexx
Index..1
Introduction..4

System overview...4
Hardware requirements ..5
Installation...5
Communication ...6

Serial connection ..6
TCP/IP connection..7

User interface..8
Main window ...8
Standard toolbar ...8
Program toolbar ..8
Communication toolbar ...9
Project tree..9
Status bar..9
Menu ...10

File ..10
Edit..11
Format...11
View ..11
Project...12
Program ..12
Tools ...13

Edit window...13
Online monitor...14
Identify Modules..15
Data manager ...16
Multisend...17

Programming...18
Hardware ..18

Expansion modules ..18
Hardware setup ..19

Variables ...19
Naming convention...19
Allocation ..19
Retentive variables ...21
EE variables..22
I/O variables..23
Internal variables ..24
Timers...25
Pulse timer..25
On-delay timer ..26
Counters ...26
Visibility in alc file..26

Refresh processing...27
Scan overrun ..27

Instruction list ..28
Structured text...29

Assignment statements ..29
Expressions ..29
Operators..29
Expression evaluation ..30
Data type conversions ..30
Multiline expressions ..31
Conditional statements ...31
if...then...else ..31
case...of ..32

Index • System overview

2

Iteration statements ..33
for...do...33
while...do...33

Operator panel ..35
General ...35
Print functions ...35
OP keys...37
Masks..38
Handling masks from plc program..41

Serial ports ..43
General ...43
Free-programmable mode ..43

Port selection ..43
Prepare transmit message ...43
Transmit ..44
Receive...45
Parse received message ..47

High speed counter ...48
General ...48

One phase counting ...48
Two phase counting, single precision ..49
Two phase counting, quad-precision..49

High speed counting ...50
High speed action ...50
Zero reset..53
Zero detect ..53

Real-time clock..54
General ...54
I/O variables..54

Networking ..55
Ethernet connection ..55
Connection options ...56

1. Direct connection..57
2. Local area connection ..57
3. Wide area connection using static IP or DynDNS..57
4. Wide area connection using relay server ...59

Ethernet sockets ...60
1. Periodic 1s ..60
2. Periodic 10s ..60
3. On-request..60
4. On-change ..61

Socket examples...61
Event-driven action ...61
Synchronized value ..61

MODBUS connection..62
Additional features ..63

NAD alias ..63
Password protection ...64
Command-line options ..65

CyBro tutorial...67
Your first CyBro program ..67

Step one: define problem ...67
Step two: define hardware..67
Step three: allocate variables ...67
Step four: write code...68
Step five: send and run...68
Step six: new frontiers ..69

Appendix ...71
Data types summary ...71

Elementary..71

Index • System overview

3

Input/Output ..71
Timer...71
Internal variables ..72

Instruction list summary ..73
Instructions ...73
Allowed type conversions ...74
Allowed type combinations ...74

Structured text summary...75
Operators..75
Flow control ..75
Edge detect functions ...76
Cast functions ...76
Display functions...76
Com2 functions...77
High speed counter functions ...77
Special functions...78

Character set ..79
Keyboard shortcuts ...80

Common ...80
Text editor ...80

Introduction • System overview

4

IInnttrroodduuccttiioonn
SSyysstteemm oovveerrvviieeww

CyPro is a software package for programming CyBro-2 controllers. It runs under Microsoft
Windows 2000/XP/Vista/Win7, and also under Linux/Wine emulator. CyPro is fully featured IDE
(integrated development environment) containing editor, compiler and on-line monitor.

PC

CyBro-2

CyBro-2 is the generic name for a group of controllers, based on the same technology. All
controllers are compatible, although some features may be different.

Each CyBro-2 is labeled with unique 6-digit serial number, also used as communication network
address (NAD).

CyBro-2 has four independent communication ports:

COM1 A-bus, Modbus RTU, or freely programmable serial port
COM2 A-bus, Modbus RTU, or freely programmable serial port
ETH A-bus and Modbus TCP
IEX-2 IEX-2/CAN and A-bus

CyPro is based on IEC 1131-3, and implements instruction list and structured text programming,
extended with several visual tools.

IEC 1131-3

structured
text

instruction
list

ladder
diagram

function
block diagram

sequential
function chart

Introduction • Hardware requirements

5

HHaarrddwwaarree rreeqquuiirreemmeennttss

Any PC capable of running MS Windows XP is sufficient. CyPro occupies about 8Mb on disc.

To connect CyBro and PC, standard serial (RS232) or Ethernet port is required. USB-to-serial
converters are generally supported, although some devices may not work.

IInnssttaallllaattiioonn

To install CyPro, start the installation archive and follow the instructions. Recommended install
directory is C:\Program Files\CyPro. If older versions are needed, it is recommended to append
version number to the installation directory, e.g. C:\Program Files\CyPro v201.

Installation does the following:

• unpack files into specified directory
• create start menu group and icons
• set association to .cyp file type
• set CyPro language and communication port

No file is copied to windows directory. No system files are replaced or changed. Default directory
for user files is C:\Program Files\CyPro\Project, although it is recommended to keep projects in
\MyDocuments directory.

To upgrade CyPro, install new release into the same directory, without uninstalling previous
version. User settings will be preserved.

Once CyPro is upgraded, it is required to also upgrade the CyBro system software (kernel). To do
this, start Tools/Kernel Maintenance, load and send kernel.bin.

CyPro and kernel version should always match. CyPro release always comes with kernel file.

To uninstall CyPro, start Control Panel, Add/Remove Programs, select CyPro and press
Add/Remove button.

Introduction • Communication

6

CCoommmmuunniiccaattiioonn

CyBro-2 has two serial (RS-232) and one Ethernet port. All ports are independent, and may
operate at the same time.

To establish communication between CyPro and CyBro, the following steps should be made:

• connect CyBro
• open new project
• adjust communication settings (serial or Ethernet)
• open Hardware setup (F5)
• start Autodetect (Alt-A)

If communication is not established, check the cable indicator icon on the status bar:

 Communication port is not available. The reason may be a wrong port number, or the
port may already be used by another application.

 Communication port is open, but the cable is not detected. The reason may be a wrong
port number, or communication cable. Connect cable to another DB-9 connector, or use
another cable.

 Cable is properly detected. If communication is still not working, check network address
and connection.

If more than one CyBro is connected through the serial interface, NAD autodetection will not work.
In that case, please enter the network address of each CyBro manually.

If the option Synchronize program with PLC is activated, commands Start and Monitor will
automatically compile and send the current project to the CyBro.

To connect PC and CyBro, a number of connection options are available.

Serial connection

Serial RS232 connection using serial cable or USB-to-serial converter:

laptop

USB-to-
converter

serial
CyBro-2

USB RS232

Serial RS-485 connection using CAD-232-A2 converters:

CyBro-2 CyBro-2desktop PC

RS485

A-bus
converter

A-bus
converterA-bus

converter

Introduction • Communication

7

TCP/IP connection

Direct connection:

Ethernet

laptop CyBro-2

Local area network connection:

desktop PC
CyBro-2 CyBro-2 CyBro-2

Wide area connection through Internet:

desktop PC router router CyBro-2

Internet

Wide area connection through Internet using relay server:

desktop PC router router CyBro-2

Internet

relay server

For more details how to setup the network, check Networking section.

User interface • Main window

8

UUsseerr iinntteerrffaaccee
MMaaiinn wwiinnddooww

CyPro consists of editor, toolbars and status bar. Default screen setup is shown below:

Each component can be docked or floating. To undock, drag the component by the left vertical line
over the edit area. To dock it again, drag window to main window border.

SSttaannddaarrdd ttoooollbbaarr

 Create a new empty project

 Open an existing project (Ctrl-O)

 Save current project (Ctrl-S)

 Print current project (Ctrl-P)

 Close current project

 Remove the selection and place it on the clipboard (Ctrl-X)

 Copy the selection onto the clipboard (Ctrl-C)

 Insert the content of the clipboard at the cursor, replacing any selection (Ctrl-V)

 Undo the most recent editing action (Ctrl-Z)

PPrrooggrraamm ttoooollbbaarr

 Open the Hardware Setup dialog box (F5)

 Open the Allocation Editor dialog box (F6)

 Open the Mask List editor (F7)

 Open the Socket List editor (F8)

User interface • Communication toolbar

9

CCoommmmuunniiccaattiioonn ttoooollbbaarr

 Send the current project to the CyBro (F9)

 Open the on-line Variable Monitor (F10)

 Start CyBro program (F11)

 Stop CyBro program and turn off all outputs (F12)

PPrroojjeecctt ttrreeee

Project tree displays all the project parts hierarchically. Left click on will expand the tree, and
allow a more detailed view. To collapse tree node click .

Right clicking any component opens it's context sensitive pop-up menu. Depending on type, it is
possible to Add, Edit, Delete or change Properties of the selected component.

For example, to define a new mask right click on Masks and choose Add.

SSttaattuuss bbaarr

Status bar shows various information about communication and connected CyBro. Default status
bar position is at the bottom of the main window.

project
status

IP
address

A-bus
address

PLC
status

com port
status

Tx/Rx
indicators

delay

System message (on the left) show result of preceding operation.

Project status is displayed if the current project is not saved. It reflects changes in source,
allocation, mask, socket, data manager or monitor list.

IP address shows CyBro IP address.

A-bus address shows CyBro A-bus address. Right click to select another or enter a new address.

User interface • Menu

10

PLC status shows:

Off-line CyBro is not responding.

Run CyBro is on-line and running.

Stop CyBro is on-line, stopped. Outputs are inactive and program is not executing.

Pause CyBro is on-line, paused. Outputs remain active, but program is not executing.

Error CyBro is on-line, some error occurred. Error codes are listed in the appendix. To
clear the error press Stop.

Loader CyBro is on-line, but system software (kernel) is not active. Start Kernel
Maintenance and send a new kernel.

Busy Unexpected messages are received.

Com port status indicates weather communication cable is properly connected:

 OK

 communication port is ok, but cable is not connected
 communication port is already used by another application

Delay shows time between sent and received message, in milliseconds.

Communication indicators show activity, green is transmit (Tx), red is receive (Rx).

MMeennuu

File

New Create a new project
Open Open an existing project
Load From PLC Load project from the PLC
Save Save the current project
Save As Save the current project under a new name
Save Allocation List Save allocation list to use with CyBro OPC or UniOP Designer
Printer Setup Select printer and printer options
Print Print the current project
Close Close the current project
Recent Projects Open recently opened project
Exit Exit

User interface • Menu

11

Edit

Undo Cancel last action
Redo Cancel last Undo operation
Cut Delete the selection and put it on the clipboard
Copy Copy the selection onto the clipboard
Paste Insert text from the clipboard to the insertion point
Delete Delete the selection
Select All Select a whole document
Find Find the specified text
Find Next Find the next occurrence of the specified text
Find Previous Find the previous occurrence of the specified text
Replace Find the specified text and replace it
Go to Line Number Move insertion point to the specific line in the text
Properties Show properties of the selected project module

Format

Indent Block Indent block of code/text
Unindent Block Unindent block of code/text
Comment/Uncomm. Code Comment/Uncomment selected part of code
Insert Identifier Open the list of identifiers to insert in the code

View

Project Tree Show Project Tree
Local Allocation Editor Show Local Allocation Editor
Editor Tabs Show Editor Tabs
Compiler Messages Show Compiler Messages
Standard Toolbar Show Standard Toolbar
Program Toolbar Show Program Toolbar
Communication Toolbar Show Communication Toolbar

User interface • Menu

12

Project

New Program Create New Program in the current project
New Program From PLC Load program from PLC into the current project
Remove Program Remove program from the current project
Properties Show properties of the current project

Program

Hardware Setup Open Hardware Setup dialog box
Allocation Editor Open Allocation Editor dialog box
Mask Editor Open Mask List editor
Socket Editor Open Socket List editor
Identify Modules Identify IEX modules and individual inputs/outputs
Data Manager Backup/restore a set of plc variables to/from PC

Syntax Check Check the current source for errors

Send Send current program to CyBro
Online Monitor Read/write plc variables on-line
Start PLC Start CyBro program
Stop PLC Stop CyBro program and turn off all outputs

Send Without Init Send current program to CyBro, keep outputs and plc variables
Pause PLC Pause CyBro program, keep outputs active

Add NAD Add new network address to the current program
Remove Current NAD Remove current NAD from the current program
Select NAD Select current network address for the active program
Connect/Disconnect Connect/Disconnect communication port
Activate Activate program
Properties Show program properties

User interface • Edit window

13

Tools

Get PLC Info Retrieve various PLC information
Kernel Maintenance Upload a new kernel to CyBro
Environment Options Change configuration options of CyPro environment
Communication Monitor optional, A-bus monitor tool, enabled by password

EEddiitt wwiinnddooww

Edit window is used to type and edit PLC program. Each window represents a single function.

Instructions may be written in both available languages, instruction list and structured text. They
cannot be mixed in the same window. To change current language, select Edit/Properties.

Cursor position File status

Editor content is dynamically syntax highlighted. Variables, constants, functions and other
language elements are displayed in different colors. To select different color scheme or customize
colors, use Tools/Environment Options/Colors.

Code helper is useful feature of the structure text editor. To display a list of allocated variables and
available functions, press Ctrl-Space.

CyPro editor allows multiple level of undo operation. Deleted or changed text can be restored by
pressing Ctrl-Z key combination, even after other completed operations. The number of edit
actions that can be undone is limited only by the available memory space, and is usually quite
sufficient.

To observe structure of .cyp file, open an example file.

User interface • Online monitor

14

OOnnlliinnee mmoonniittoorr

Online monitor is a dialog box designed to display current values of CyBro variables. To open it,
select Program/Online Monitor, click Monitor icon on communication toolbar or press key F10.

To insert variables click Add button or press Insert key. Dialog box Variable Insert will appear.
Select desired variables and press OK. To select continuous block of variables, press Shift key.
Multiple selections are possible when Control key is pressed. To rearrange list, select variable and
click Move Up or Move Down, or press Control and move variable with Up or Down (arrow) keys.

Variable monitor allows unlimited number of sets. To quick access first five press Alt-1 to Alt-5.

Monitor values are updated approximately every 100ms. History scrolling speed can be changed
using Speed slider.

To change variable value double-click it, press the Edit Variable properties button or select
Properties option in the right-click menu.

Enter new value and press OK. The entered value is sent to CyBro and then read back, so the
monitor displays the actual value. Note that if CyBro is running and the program changes the
variable, its value will be immediately rewritten.

To toggle value of a bit variable, press Space key.

User interface • Identify Modules

15

IIddeennttiiffyy MMoodduulleess

Identify Modules is a tool used to identify IEX modules and individual inputs/outputs. Because of
change/reset operation, tool may be used by a single person.

Each LED represents a single digital input or output. When mouse is positioned over LED, signal
name is shown in the bottom left corner.

Input/output LED colors are defined according to the following table:

LED current level changed
 0 no
 1 no
 0 yes
 1 yes

General error (GE) condition is defined as:

LED description
 module is operating properly
 error, module is not operative

In case of general error, use on-line monitor to find the problem cause (module timeout error, bus
error or program error).

To identify an unknown input:

1. Reset "Identify Modules".
2. Walk to unknown switch and press for a second.
3. Walk back and search the yellow LED.

To identify an unknown output:

1. Click output LED and check outputs to activate.

User interface • Data manager

16

DDaattaa mmaannaaggeerr

Data manager is a tool used to transfer data between PLC and PC. It allows user to store plc
configuration or to export data to for statistic or graphic analysis. Variables are organized by data
sets. Data set is user-defined list of plc variables. It contains variables and their respective values.

The following commands are available:

Read Read variables from plc to data manager.
Write Write variables from data manager to plc.
Import Import variables from csv file to data manager.
Export Export variables from data manager to csv file.

Read Import

Write Export

blinds_left,int,Dec,"50"
blinds_right,int,Dec,"50"
lcd_selector,int,Dec,"0"
light_scene,int,Dec,"11"
light_scene_default,int,Dec,"0"
op00_lcd_charset,int,Dec,"6"
op00_lcd_contrast,int,Dec,"127"
temperature_setpoint,int,Dec,"0"
ventilation,int,Dec,"5"

CSV fileData managerCyBro

The comma-separated values (or CSV) file is a text-only file that stores tabular data. Each row
contains variable name, type, base and value.

blinds_left,int,Dec,"50"
blinds_right,int,Dec,"50"
light_scene,int,Dec,"11"
light_scene_default,int,Dec,"0"
op00_lcd_charset,int,Dec,"6"
op00_lcd_contrast,int,Dec,"127"
temperature_setpoint,int,Dec,"0"
ventilation,int,Dec,"5"

A single csv file contains one data set. File name is equal to data set name. Csv format is suported
by virtually all spreadsheet and database programs. Number of variables in data set is not limited.
For a large number of variables, reading and writing may last a few seconds.

To open a set of plc variables into MS Excel, do the following:

• Create New data set
• Add variables to data set
• Read values from PLC
• Export to csv file
• Open MS Excel and import csv file

Similar procedure may be used in the opposite direction.

User interface • Multisend

17

MMuullttiisseenndd

Multisend is tool which allows updating multiple controllers at once.

All programs in project, and all NAD's for progam are listed.

It is optional to send program either without initialization (only if allocation is not changed), with a
standard initialization (retentive variables are preserved), or with forced initialization (all variables
are initialized, including retentives).

Option "Check all programs" will verify all programs by reading back and comparing to original.

Programming • Hardware

18

PPrrooggrraammmmiinngg
HHaarrddwwaarree

Expansion modules

CyBro-2 can be expanded with various IEX-2 expansion units. For the complete list of available
modules, please check the hardware manual.

IEX-2 expansion units

Each IEX module occupies one “slot”. Slot is not a physical device - it is a placeholder, logical
entity used to address an expansion.

slot 1slot 0 slot 2 slot 3 slot 4 slot 5

...

slot 30 slot 31

Each slot has a slot number, numbered from 0 to 31. Slot 0 is occupied with local CyBro-2 inputs
and outputs.

Each IEX-2 module has unique 21-bit address, there are no DIP switches. Autodetect will sort
modules according to type and address, in ascending order. Variable prefixes are assigned in the
same order.

Programming • Variables

19

Hardware setup

The first step is setting up hardware configuration.

To perform automatic hardware detection press Autodetect button. If autodetect is not responding,
enter CyBro network address and try again.

After autodetection, Hardware Setup will display list of connected modules. Press OK to accept the
configuration and create auto-allocated i/o variables.

VVaarriiaabblleess

Naming convention

Variable name can be any string, containing letters, digits and underlines; provided that the first
character is not a digit. Maximum length is 32 characters. Names are not case sensitive, so "Valve"
and "valve" are the same variable. National characters (like ß, ä, ü, ë, đ, č, ć, đ, š, ž...) are not
supported.

Examples of valid names:

cnt
track5a
caret_position
valve_open_req
MaximumWaterLevel

Variable name should not match any IEC-1131-3 keyword.

Allocation

According to IEC-1131-3, memory cannot be accessed by address. Each variable should have
unique name and a strictly defined type. Same is valid for inputs and outputs.

Programming • Variables

20

Variables are allocated using Global Allocation Edit:

To insert a new variable choose group where a new variable will be stored, and select New
Variable. Insert New Variable form will appear.

Variable name should be entered. If name is incorrect, button OK will not be available.

Summary of data types:

type size
(bytes)

range

bit 1 0..1
int 2 -32768..32767
long 4 -2147483648..2147483647
real 4 -1e38..1e38
word 16 -

Bit, int, long and real are basic data types.

Bit is a single boolean variable with only two possible values, zero or one. It should be used for
flags, logical equations, logical states and similar. In bit and out bit are both bit type. The result of
the comparison instructions is also a bit type value.

Int is a 16-bit signed number. It should be used for counting, encoding states, fixed point arithmetic
and similar.

Long is a 32-bit signed value. It should be used when numbers bigger then 32,767 are expected.

Programming • Variables

21

Real is a floating point number. Floating point instructions typically consume three times as much
memory as integer, and processing of the floating point numbers is about ten times slower then
integers.

Word is an array of 16 bits. It doesn’t represent a value - it is a handy method to perform logical
operations to 16 bits simultaneously. Arithmetic operations are not applicable for word variables.

In bit, out bit, in word and out word variables represent physically connected binary (bit) and analog
(integer) signals.

Structures (timers and counters) are structured data types, consisting of several dedicated fields.

Constants are used to represent a value that will not be changed. As an example, Pi=3.14 can be
defined for trigonometrical calculations. Data types do not apply for constants.

Type conversion instructions are also available, but should be used with caution, because they are
likely to cause errors. Limited number of type conversions indicates proper planning and good
programming style.

Retentive variables

Retentive variables retain their value when power supply goes down, but also when PLC is
stopped/started.

To make variable retentive, set the retentive flag in the global allocation dialog. Retentive flag is set
for each variable individually.

Both retentive and non-retentive variables reside in RAM, but non-retentives are automatically
cleared by kernel during power-up and program start.

RAM

PLC program

retentive

Number of retentive variables is not limited. If required, the whole PLC memory may be retentive.

Data retention time of retentive variables is specified in CyBro hardware manual. When power is off
for a time period longer than specified, content of retentive memory may be lost.

System bit retentive_fail indicates that retentive memory is lost. It is set automatically after power-
on, and clear next time PLC is started. Note that retentive_fail means retentive memory is certainly

Programming • Variables

22

lost. If only a partial lost of memory occur, it may not be indicated. To ensure 100% memory
protection, user should calculate checksum/crc protection.

Sending a new program to PLC will clear variables. If allocation list is not changed, retentive
variables will be preserved. To send program without clearing variables, use command Send
Without Init.

EE variables

Variables that need to be preserved for a long period should be stored in EEPROM memory.

To make variable permanent, set copy to EE flag in the global allocation dialog. Copy to EE flag
should be defined for each variable individually.

EE variables resides in RAM memory as all other retentive and non-retentive variables, but they
also have a copy in EEPROM. Because of this, they are used by PLC program exactly the same
way as other variables, but in addition, reading and writing to EE is available.

ee_read_req

ee_write_req
ee_write_magic

RAM

PLC program

EEPROM

To read all variables from EE to RAM, set bit ee_read_req. Bit will be automatically cleared when
copy is finished. Depending on number of EE variables, copy process may last from few
milliseconds up to 3-4 seconds.

To write all variables from RAM to EE, set ee_write_magic to 31415 and set ee_write_req. When
copy is finished, both variables will be cleared. Depending on number of EE variables, write
process may last from few milliseconds up to 5-6 seconds. The purpose of magic is to protect EE
memory from accidental writing.

To check how system works, open the example program EEReadWriteDemo.cyp.

Only a complete EE memory can be read or written, there is no method to read or write single
variable.

EE variables should not be accessed by PLC program during both read and write operation.
Reading and writing should not be activated at the same time. Clearing bits ee_read_req and
ee_write_req during reading or writing may lead to unexpected results and should be avoided.

Programming • Variables

23

All EE variables are automatically read on power-up. Variables may be used when reading is
finished, after the ee_read_req goes to zero.

Important or sensitive variables may also be stored in EE. EE memory is much more safe against
accidental damage caused by electromagnetic spikes. If RAM content is damaged, all chances are
that EEPROM is preserved.

Total number of EE variables is limited by physical memory size, and it is specified by hardware
manual. To check memory usage, open PLC Info dialog box, tab PLC Program, Total EE size.

EEPROM data retention time is 100 years. Endurance is about 1 million write cycles.

I/O variables

I/O variables are used to access physical inputs and outputs. Hardware setup automatically
allocates I/O variables.

Although it is possible to change i/o names, it's advisable to use default names. When hardware
setup is changed, renamed variable may not be placed correctly.

CyBro-2 uses four address spaces for I/O access, two binary and two analog:

IX input bit
QX output bit
IW input word
QW output word

Binary inputs and outputs are allocated respectively, starting from the ix0 as the first physical input
and qx0 as the first physical output. Remaining space is reserved for expansion cards.

IX0 on-board

slot 1

slot 31

IX32
IX31

IX63

IX2016

. . .

IX2047

QX0 on-board

slot 1

slot 31

QX32
QX31

QX63

QX2016

. . .

QX2047

binary inputs binary outputs

Analog I/O cards have 32 words reserved for each slot. Single channel cards use only the first
reserved word. Slot 0 is reserved, so the first available slot is 1. In word and out word variables are
both integer type.

IW0 reserved

slot 1

slot 31

IW32
IW31

IW63

IW2016

. . .

IW2047

QW0 reserved

slot 1

slot 31

QW32
QW31

QW63

QW2016

. . .

QW2047

analog inputs analog outputs

Input and output variables are auto-allocated, and their names are in the form:

Programming • Variables

24

nnnxx_varname

where nnn is module type name (e.g. bio for Bio-24, op for OP-2), xx is module ordinal number,
starting from 00 (i.e. third operator panel is 02), and varname is the name of the variable.

For example, I/O variable key_f related to the key F of the first operator panel will be allocated as
op00_key_f.

Internal variables

CyBro-2 internal variables are allocated through I/O address space. Each variable has a specific
function.

first_scan Active only during first scan. May be used to initialize variables.

scan_overrun Indicates that scan timeout occurred. If program cycle lasts longer
then 50ms, execution will be interrupted.

clock_10ms 10ms system clock, 5ms high and 5ms low.

clock_100ms 100ms system clock, 50ms high and 50ms low.

clock_1s One second system clock, 500ms high and 500ms low.

clock_10s Ten second system clock, 5s high and 5s low.

clock_1min One minute system clock, 30s high and 30s low.

retentive_fail Indicates that retentive memory is no longer valid, because the power
supply was down for a too long period.

all_outputs_off If active, all CyBro binary outputs will immediately go off.

all_inputs_off If active, all CyBro binary inputs are disconnected, retaining the last
value.

no_input_filter If active, local 5ms input filter is turned off.

rtc_read_req Set to read current time/date from RTC. Will automatically reset when
finished.

rtc_write_req Set to write current time/date to RTC. Will automatically reset when
finished.

ee_read_req Set to read all permanent variables from EEPROM. It is automatically
set during power-up. Will automatically reset when finished.

ee_write_req Set to write all permanent variables to EEPROM. Will automatically
reset when finished.

ee_write_magic Used as EEPROM write protection. Set to 31415 to enable writing.
Will automatically reset when writing is finished.

scan_time Execution time of last scan in milliseconds.

scan_time_max Maximal scan execution time encountered.

scan_frequency Number of scan cycles per second. Zero if program stopped.

Programming • Variables

25

rtc_sec
rtc_min
rtc_hour
rtc_weekday
rtc_date
rtc_month
rtc_year Real-time clock data.

Timers

Timers are special structured variable types, used to determine time interval. To define a new timer
variable, open Insert New Variable dialog box, choose timer type, enter name, adjust preset, type
and timer base, and press OK.

Timer base is a period in which the timer is incremented, i.e. the time resolution of the timer. The
base should be equal or longer than the program scan time, therefore 10ms base is not suitable for
a long CyBro program.

Timer may be represented as the function block with two inputs and two outputs:

timer
in q

pt et

Similarly, the timer variable consists of four fields. Each field is an elementary data type. Fields are:

name direction type description
in input bit input
q output bit output
pt input long preset time
et output long elapsed time

To use timer from the CyBro program, the following syntax applies:

 <timer name>.<field>

For example, to set the preset of the wash_timer to 15 seconds (assuming that base is 100ms):

 wash_timer.pt:=150;

Elapsed time of the wash_timer will start at 0 and increment every 100ms until it reaches 150.

Pulse timer

Timer output is activated immediately after the rising edge of input signal. After the specified time,
the output will go off. Changes of input signal during pulse do not affect output.

Programming • Variables

26

The picture shows typical pulse timer operation:

T T T

IN

Q

ET

Typical application is staircase light timer.

On-delay timer

When input is activated, timer starts counting. After specified time output activates and stays high
until input goes low. Available fields are the same as pulse timer.

The picture shows typical on-delay timer operation:

T T

IN

Q

ET

Typical application is star-delta switching for accelerating three-phase motors.

Counters

Counter type is depreciated, and recommended not to use.

Visibility in alc file

Various tools are able to read/write CyBro variables, like CyBroComServer, CybroMiniScada,
CyBroScheduler and others.

Each variable can be marked as:

User exported to alc file as "user variable", visible in all tools, including tools intended
mainly for end users (e.g. CyBroScheduler)

System exported to alc file as "system variable", visible only in tools normally used by system
administrators (e.g. CyBroComServer, CyBroConfigTool, CyBroKissLogger,
CyBroMiniScada...)

Hidden not exported to alc file, invisible for all external tools (except CyPro)

Leave automatically allocated I/O variables marked as System.

Programming • Refresh processing

27

RReeffrreesshh pprroocceessssiinngg

CyBro implements refresh processing system - inputs are sampled immediately before, and
outputs are refreshed immediately after the task execution. Even if input changes during task
processing, input value remains stable during scan.

Although refresh processing is slower, it makes programing easier.

Scan overrun

Scan time is defined as a time needed to complete one program cycle (scan). Program cycle
consists of system processing and PLC (user) program.

PLC program
read

inputs
write

outputs
system
tasks

max. 50ms

scan time

If execution time of PLC program exceeds 50ms, CyBro enters the scan overrun error state and
stops program execution. Error code is displayed on the status bar.

In final version of PLC program, checking for a scan overrun error is usually disabled. To do this,
uncheck checkbox Scan overrun stops program located at Program Properties dialog box, tab
PLC.

In that case, program longer than 50ms will be interrupted, and started from the beginning. System
variable scan_overrun will be set, but program continues operation without error.

Programming • Instruction list

28

IInnssttrruuccttiioonn lliisstt

Instruction list is a low level language with structure similar to assembly language. Each line of
instruction list code consists of four parts: label, instruction, operand and comment.

cnt_beg: ld product_count // counting products

label instruction operand comment

Computation model of instruction list program consists of allocated variables and accumulator. All
arithmetic and logic operations are performed on the accumulator.

accumulatorvariables

operations

Unlike classical assembly language, accumulator may contain value of any type. Type is
determined by the operand. If operand type is not unique, type is determined from subsequent
instructions. Type tracking panel shows type for each line.

Once the accumulator is loaded, type cannot be changed until the result of the operation is stored.
Exceptions are the comparison instructions and instructions for changing type.

Single operand instructions generally use accumulator as operand. In some cases, it is possible to
execute the instruction directly on the variable.

The accumulator is always the first operand in the instructions with two operands. Second operand
may be constant or variable. The result of the operation is also stored in accumulator.

Typical arithmetical or logical sequence should load value into accumulator (step 1), perform
operation (step 2), and store result (step 3).

accumulator

ld

ststep 3

step 1

step 2

Each instruction is written in a separate line.

For a list of available functions, check appendix.

Programming • Instruction list

29

SSttrruuccttuurreedd tteexxtt

Structured text is a high level language with syntax somewhat similar to Pascal, but specifically
developed for industrial control applications.

Assignment statements

Assignment statements are used to store value in variable. An assignment statement has the
following general format:

 variable := expression;

The assigned value should be equal or lower data type than the variable.

Expressions

Expressions are used to calculate values derived from other variables and constants. Expression
always produces a value of a particular data type. An expression may involve one or more
constants, variables, operators or functions. Using expressions, CyBro can perform complex
arithmetic computations involving nested parenthesis and/or different data types.

Examples:

 y_position:=5;
 down_timer.pt:=15000;
 circle_area:=r∗r∗3.14;
 case_counter:=case_counter+1;
 volts:=amps∗ohms;
 start:=(oil_press and steam and pump) and not emergency_stop;
 valid_value:=(value = 0) or ((value > 10) and (value <= 60));

Operators

CyBro supports a number of arithmetic and logical operators, listed in the following table:

operator alias unary binary bit word int long real result type
+ • • • • same
- • • • • • same
∗ • • • • same
/ • • • • same

mod % • • • same
not ! • • • same
and & • • • same
or | • • • same
xor • • • same
= == • • • • • • bit

<> != • • • • • • bit
< • • • • bit

<= • • • • bit
> • • • • bit

>= • • • • bit
:= • • • • • • same

Operators are sorted by precedence. Some operators have alias which may be used instead of
standard mnemonic.

Programming • Instruction list

30

Expression evaluation

Expressions are evaluated in a particular order depending on precedence of the operators and
other sub-expressions. Parenthesized expressions have the highest precedence. Operators of the
highest precedence are evaluated first, followed by lower precedence operators, down to the
lowest. Operators of the same precedence are evaluated left to right.

Consider following example:

 Speed1 := 50.0;
 Speed2 := 60.0;
 Press := 30.0;
 Rate := Speed1/10 + Speed2/20 - (Press + 24)/9;

Evaluation order is:

 Speed1/10 = 5
 Speed2/20 = 3
 Press+24 = 54
 54/9 = 6
 5+3 = 8
 8-6 = 2
 Rate = 2

To change evaluation order add brackets:

Rate:=Speed1/10+Speed2/(20-(Press+24)/9);

The expression (20-(Press+24)/9) has higher precedence and will be evaluated before its value is
used as a divisor for Speed2.

The value for Rate in this case will be:

 = 5 + 60/(20 - 6)
 = 5 + 60/14
 Rate = 9.286

Data type conversions

Type conversions are performed automatically, but only lower-to-higher type conversions are valid:

bit → integer → word → longint → real

In the following example, a number of conversions will be performed.

real0 := (real1 > real2) int1 + long1;∗
real

real

bit

int

real

long

real

int

long

If both arguments are integer, result is also integer, even if assigned to a real variable.

 i := 25
 r := i/10; //result is r=2

To get correct floating point result, at least one operator should be floating point.

Programming • Instruction list

31

To correct previous example, constant 10 may be written as 10.0:

 i := 25
 r := i/10.0; //result is r=2.5

Same result is obtained casting one operator to real:

 i := 25
 r := real(i)/10; //result is r=2.5

Multiline expressions

It is possible to write a multiline expression, but every line must end with an operator. Following
example shows how expression can be divided into several lines.

 heater_on := (heater_temperature < 600) and
 (((mode = MANUAL) and start_pressed) or
 ((mode = AUTO) and heater_on_request)) and
 not emergency_stop;

Conditional statements

Conditional statements provides restricted execution of statement blocks, depending weather
particular condition is true or not.

if...then...else

Block of statements can be evaluated and executed depending on the value returned by a boolean
expression using if...then construction.

This takes general form:

 if <boolean expression> then
 <statements>;
 end_if;

The boolean expression can be any expression that returns a TRUE or FALSE boolean result, e.g.
the state of a single bit variable or a complex expression involving numerous variables.

Alternative statements can be executed using the if...then...else construction in the form:

 if <boolean expression> then
 <statements>;
 elsif <boolean expression> then
 <statements>;
 else
 <statements>;
 end_if;

Examples of conditional execution:

 if collision then
 speed:=0;
 brakes:=ON;
 end_if;

 if (gate=closed) and (pump=on) and (temp>200) then
 control_state:=active;
 else
 control_state:=hold;
 pump_speed:=10;
 end_if;

Programming • Instruction list

32

If...then and if...then...else constructions can be nested within other conditional statements to
create more complex conditional statements.

 if flow_rate>230 then
 if flame_size>4 then
 fuel:=4000;
 else
 fuel:=2000;
 end_if;
 else
 fuel:=1000;
 end_if;

Further statements can be conditionally executed within the if...then using the elsif construction,
which has the general form:

 if <boolean expression> then
 <statements>
 elsif <boolean expression> then
 <statements>
 else
 <statements>
 end_if;

Any number of additional elsif sections can be added to the if...then construction.

 if a>b then
 d:=1;
 elsif a=b+2 then
 d:=2;
 elsif a=b-3 then
 d:=4;
 else
 d:=3;
 end_if;

case...of

The case statement may provide a readable alternative to deeply nested if conditionals. It consists
of an selector expression and a list of statement blocks, each preceded by one possible expression
value. Value of selector expression must be ordinal (boolean, integer or longint) and may be the
result of another complex expression.

The set of statements that have a constant value that matches the value of the expression are
executed. If no match is found, the statements preceded by else will be executed.

The case construction has the following form:

 case <expression> of
 <value1>: <statements>;
 <value2>: <statements>;
 <value3>: <statements>;
 else
 <statements>;
 end_case;

Programming • Instruction list

33

Example:

 case material_type of
 1: speed:=5;
 2: speed:=20;
 3: speed:=25;
 fan:=ON;
 4: speed:=30;
 fan:=ON;
 5: speed:=50;
 fan:=ON;
 water:=ON;
 else
 speed:=0;
 end_case;

 case alarm_bit of
 TRUE: speed:=0;
 FALSE: speed:=MAX_SPEED;
 end_case;

Iteration statements

Iteration statements are provided for situations where it is necessary to repeat one or more
statements a number of times, depending on the state of the particular variable or condition.

Iteration statements should be used carefully in order to avoid endless loops, which will cause scan
overrun error.

for...do

The for...do construction allows a set of statements to be repeated depending on the value of an
iteration variable. This is an integer or long integer variable which is used to count the statements
executions. Iteration variable is incremented by 1 at the end of for...do loop.

This construction takes the general form:

 for <var>:=<expression> to <expression> do
 <statements>;
 end_for;

Before iteration takes place, its variable is tested weather it has reach the final value. After leaving
for...do construction, iteration value will contain the final expression value.

The statements within for...do loop should not contain fp or fn instructions.

Example:

 for i:=0 to 19 do
 channel[i]:=TRUE;
 end_for;

 for t:=lo_value-1 to hi_value*2 do
 tank_number:=t;
 state[t]:=t/2;
 end_for;

while...do

The while...do construction allows one or more statements to be executed while a particular
boolean expression remains true. The boolean expression is tested prior to executing the
statements. If it is false, the statements within the while...do will not be executed.

Programming • Instruction list

34

This construction takes the general form:

 while <expression> do
 <statements>;
 end_while;

The statements within while...do loop should not contain fp or fn instructions.

Example:

 while value<(max_value-10) do
 value:=value+position;
 end_while;

While...do loop is rarely used in a typical PLC program.

Operator panel • General

35

OOppeerraattoorr ppaanneell
GGeenneerraall

Operator panel is the optional external device connected to the CyBro-2 via the IEX-2 bus. OP
provides LCD display and a few keys readable from the PLC program.

For a proper operation, OP has to be defined in the Hardware Setup dialog box. Hardware setup is
saved together with project.

To program operator panel, the following tools are available:

Print functions Structured text functions typed in the PLC program. Used to display strings
and values.

OP keys Bit variables readable from PLC program. Represents operator panel keys.

Masks Visual tool for programming operator panel, used to enter parameters.
Capable of entering integer values, decimal values and values represented
by strings. Parameters may be hierarchically organized.

PPrriinntt ffuunnccttiioonnss

Print functions are structured text functions used to display text messages and values.

First parameter is slot number where display appears in the hardware setup. Two following
parameters of all functions are x and y coordinates. They are used to set display position. Print
origin is in the upper left corner.

Hello, world!
0123456789012345

0,0

0,1

15,0

15,1

Printing outside visible range may produce unexpected results.

Print functions are:

 dclr(slot:int);

Display clear.

Clears the whole display. Requires no parameters.

Operator panel • Print functions

36

 dprnc(slot:int, x:int, y:int, c:char);

Display print ASCII character.

Prints a single character on the specified coordinates. Character may be entered directly (‘A’), as
ASCII constant (65), or using an integer variable which represents the ASCII value. Values from 0
to 255 are allowed.

 dprns(slot:int, x:int, y:int, str:string);

Display print string.

Prints character string on the specified coordinates. The string is an array of characters enclosed in
the single quotes. It may contain any characters from the extended ASCII set (character codes 32
to 255).

 dprnb(slot:int, x:int, y:int, c0:char, c1:char, value:bit);

Display print binary value.

Prints first or second ASCII character on the specified coordinates, depending on the bit value. If
the value is false the first character is printed, otherwise the second.

 dprni(slot:int, x:int, y:int, w:int, zb:bit, value:int);

Display print integer value.

Prints integer value to the specified coordinates. Parameter w defines printing width. For example,
if w is 4, valid print range is from -999 to 9999. Parameter zb is binary and stands for a zero
blanking. If zb is 1 leading zeroes are not printed.

 dprnl(slot:int, x:int, y:int, w:int, zb:bit, value:long);

Display print long value.

Prints long value to the specified coordinates. Parameter w defines printing width. For example, if
w is 6, valid print range is from -99999 to 999999. Parameter zb is binary and stands for a zero
blanking. If zb is 1 leading zeroes are not printed.

 dprnr(slot:int, x:int, y:int, w:int, dec:int, value:real);

Display print real value.

Prints real value to the specified coordinates. Parameter w defines printing width, and parameter
dec defines number of printed decimals. For example, if w is 6 and dec is 2, valid print range is
from -99.99 to 999.99. Zero blanking is always on.

Each function parameter (except string for dprns) may be a constant, a variable or an expression.
This may be used to create animated displays, as in the following example:

 dclr(1);
 dprns(1,0,0,'Moving...');
 dprns(1,x,1,'o');
 x:=(x+fp(clock_100ms))%16;

CyBro-2 may handle multiple operator panels.

Operator panel • OP keys

37

OOPP kkeeyyss

OP keys are accessible from PLC program as input variables:

key_up
key_dnkey_p

key_e
key_f

Key P is usually used to invoke and exit mask, so it's not available for PLC program (reading is
zero). However, if no entry point is defined, it behaves the same as other keys. In such case, mask
may be invoked by writing mask number to op00_next_mask.

When mask is active, keys up, dn and E are also not available (reading is zero). Key F is always
available.

Keys don’t have autorepeat. Key variable is true as long as the key is pressed. After the key is
released, it becomes false.

Any two (or more) keys may be pressed simultaneously. This may be used to initiate a special
function. In the following example, pressing up and dn simultaneously resets product_count.

 if fp(key_up and key_dn) then
 product_count:=0;
 end_if;

Key variables are allocated automatically when OP is defined in Hardware Setup.

Operator panel • Masks

38

MMaasskkss

Mask system is easy-to-use visual tool for programming operator terminal.

Mask is a container for a variable that will be edited. Masks are transferred to the CyBro together
with PLC code.

User creates a new mask or edits the existing one by using Mask Editor. Created masks are listed
in the Mask List. Masks are integral part of the PLC project, they are saved on the disc and
transferred to the CyBro.

PLC project
Mask Editor

Mask List
CyBro-2

When user presses P, CyBro sends first mask to the OP. Pressing E advances it to the next mask.

Entry point

Next mask

Next mask

[exit]

P

E

E

E

mask01

mask02

mask03

By the use of branching features, masks may be hierarchically organized:

Entry point

Branching

[exit] [exit][exit]

P

E

E EE

E EE

mask01

mask04 mask06mask02

mask05 mask07mask03

Operator panel • Masks

39

To start working with masks, press Masks button on the standard toolbar or press key F7. Mask
List dialog box will appear.

To create a new mask click Add or press Insert key. Mask Editor dialog box will appear.

Name is a unique string identifier that identifies a particular mask.

Next mask defines a mask that becomes active after E key is pressed.

Escape mask defines a mask that becomes active after P key is pressed. Usually, this key is used
to exit from mask.

Caption field is a short string that will appear on the display to identify the currently edited variable.
Caption position is represented by the yellow rectangle. To move the caption, drag the rectangle
into the desired position. To resize caption, drag the right edge of the rectangle.

Edit field is a display area in which the value of edited variable is displayed. It is represented by the
red rectangle. Edit field should have enough space for editing variable in the desired range. To
move and resize field, drag it like the caption.

Unit field is a short string, similar to caption. Unit field is represented with green rectangle, and it is
commonly used for displaying engineering units.

Bargraph is a semi-graphic horizontal progress bar. Few different styles are available. To use
bargraph, both low and high limits should be defined.

Operator panel • Masks

40

Lo limit and Hi limit define allowed range.

Step defines a value for which the variable will be changed for a single key press.

Decimal places may be used for real as well as for integer and long variables. In the former case,
only the display is fractional (e.g. for decimal places=1, value 254 is shown as 25.4).

Enter required and Jump on first press define method to operate with navigation keys (P, E). Three
combinations are available:

Enter required: no

P E
next maskescape mask current mask

Enter required: yes
Jump on first press: no

P

PE

E
next maskescape mask current mask

value changed
(flashing)

Enter required: yes
Jump on first press: yes

P

P

E

E

next maskescape mask current mask

value changed
(flashing)

If enter required is false, changed value will be sent to CyBro immediately after up or dn key is
pressed. If enter required is true, changed value will be sent to CyBro only when E key is pressed.
To indicate that change is not confirmed, changed value will flash.

Operator panel • Handling masks from plc program

41

Variable may be entered as menu rather than as numerical value. To define menu entries, run
Mask Editor, click Menu tab and Add as many items as needed.

When executing CyBro program, the display will show items by name, and variable product_type
will take value 0, 1 or 2.

Branching tab provides branching onto different masks according to the entered value. This can be
used to organize parameters into various parameter sets, but also for a password protected
parameters.

Active mask takes control of all panel keys except the F key, so it is not possible to use them from
CyBro program at the same time. Mask fields are displayed “over” the user display. After exiting
mask, display content is restored.

If mask is too large to fit into operator panel it will not be activated, and it will operate like an empty
mask. Mask size is displayed in Mask List dialog box. Available operator panel mask memory is
displayed in the Hardware Setup dialog box. To decrease mask size reduce number of menu
entries or reduce edit field width. Reducing caption and unit field width may also save few bytes.

Only one mask can be activated at the time.

HHaannddlliinngg mmaasskkss ffrroomm ppllcc pprrooggrraamm

CyBro program can get currently active mask number by reading variable current_mask. When
current_mask is zero, no mask is active.

Program may force execution of a certain mask by writing to variable next_mask. After the mask is
sent, next_mask will be set to -1, and current_mask will change accordingly.

Operator panel • Handling masks from plc program

42

The following example shows a typical mask transition:

mask03 mask04

operator panel
sends a request
for a new mask

CyBro sends
mask04 to
operator panel

Table shows approximate timings and values for the transition:

current_mask
mask03 variable

next_mask

1

2-3ms 2-3ms 50-100ms

3
20

3
20

3
25

0
25

4
25

-1 -1 -1 4 -1

2 3 4

Events are marked by black arrows:

1. User pressed Enter
2. New value sent to CyBro
3. Request for new mask sent to CyBro
4. New mask sent to operator panel and activated

Red arrows mark most important value changes.

The same transition may be initiated by the following plc program:

 if <condition> then
 op00_next_mask:=4;
 end_if;

Short gap in current_mask value comes from the finite network response time. To check weather
no mask is active, program should also check the value of next_mask. The following example will
properly set the panel begining mask:

 if op00_current_mask=0 and op00_next_mask=-1 then
 op00_next_mask:=10;
 end_if;

Both mask control variables may also be accessed through the A-bus.

Serial ports • General

43

SSeerriiaall ppoorrttss
GGeenneerraall

COM1 and COM2 are multi-purpose serial RS232 ports, available for following protocols:

• A-bus slave
• Modbus RTU slave
• free-programmable port

Operation mode is selected by Configuration. It is not possible to change mode from plc program.

FFrreeee--pprrooggrraammmmaabbllee mmooddee

As a general-purpose communication port, various serial devices may be connected: sensors,
scales, modems, radio links, printers and others.

Communication protocol is determined by the PLC program. Although binary message format is
supported, communication functions are most suitable for sending, receiving and parsing plain
ASCII messages. Both master and slave operation is supported. Com2 port is full duplex, so data
may flow simultaneously in both directions.

Port selection

Before communication commands are applied, port should be selected:

 com_select(port:int);

To select COM1, port is 1. To select COM2, port is 2.

Selected port may be changed at any time.

Prepare transmit message

Prior to transmission, program should create complete outgoing message. To create a message
use display functions dprnc(), dprns(), dprnb(), dprni(), dprnl() and dprnr().

To "print" to transmit buffer, use 0 as a slot number - transmit buffer appears as display in slot 0.

The X coordinate is transmit buffer position. The Y coordinate should be zero. Maximum message
length is 1024 bytes.

For example, to write message “Hello!” enter:

 dprns(0,0,0,'Hello!');

Message length is 6 characters.

Serial ports • Free-programmable mode

44

Special characters may be entered as a two-character combination. The first character being a
backslash ('\'), and second being a one of the following:

combination ASCII code hex code
\n CR LF 0D 0A
\r CR 0D
\t TAB 09
\\ \ 5C

\nn any nn

The last three-character combination may be used to enter a hexadecimal code of any ASCII
character. For example, '\41' is equivalent to letter 'A'.

For example, to create the message “Hello!” followed by carriage return and line feed, enter:

 dprns(0,0,0,'Hello!\n');

Message length is 8 characters.

To create message composed of keywords and numerical values use:

 dprns(0,0,0,'>LEVEL=xxx.xx TEMPERATURE=xx.x ERROR=xx\n');
 dprnr(0,7,0,6,2,water_level);
 dprnr(0,26,0,4,2,water_temperature);
 dprni(0,37,0,2,no,error_code);

Note that x-es in the dprns instruction will be overwritten by the subsequent commands.

Function dprnc() is used to enter single-byte binary value.

For example, to create 4-byte message containing letters ‘ABC’ followed by ESC character (ASCII
code 27), enter:

 dprnc(0,0,0,65);
 dprnc(0,1,0,66);
 dprnc(0,2,0,67);
 dprnc(0,3,0,27);

To create 2-byte binary message containing an integer value (most significant byte first), enter:

 dprnc(0,0,0,value/256);
 dprnc(0,1,0,value%256);

Using dprns() and dprnc(), any binary message may be created.

Transmit

To send prepared message, use function tx_start():

 tx_start(char_num:int);

Parameter char_num is the number of characters to transmit. Transmission always starts from
beginning of the buffer.

 tx_active():bit;

Function tx_active() returns current transmission state. When transmission is finished tx_active()
falls to zero.

Serial ports • Free-programmable mode

45

 tx_count():int;

Function tx_count() returns the number of characters left. If tx_count() is zero and tx_active() is still
true, that means last character is currently transmitted.

 tx_stop();

To stop transmitting immediately, use function tx_stop(). Current character will be finished, but rest
of a message will not be transmitted.

Receive

Receiver and transmitter are fully independent.

Maximum length of a received message is 1024 bytes. If more than 1024 characters are received,
receiving position rolls-over to the beginning of the receive buffer. In that case, the number of
received characters is set to zero.

To start receiving use function rx_start(). This function also defines criteria to stop receiving:

 rx_start(beg_ch:char, end_ch:char, len:int, msg_tout:int, char_tout:int);

Parameter begch specifies the first character of received message. After the receiving is initiated,
any other character will be rejected until begch is received. To receive a message without
specifying the first character, put a zero instead of begch.

Parameter endch specifies the last character of a received message. After endch is received,
reception is stopped. To receive a message without specifying the last character, put a zero
instead of endch.

Parameter len specifies the length of a received message. After the required number of bytes, the
reception is stopped. To receive a message of undefined length, set len to zero.

Parameter msg_tout specifies message timeout in milliseconds. This is the time after which the
receiver will quit if no characters are received. Maximum timeout is 32 seconds. To receive without
limiting message time, set msg_tout to zero.

Parameter char_tout specifies the receiving timeout between individual characters. If characters
sent by accompanying device are sent continuosly without gaps, character timeout may be set to a
pretty low value in order to improve the receiver response time. Character timeout should always
be greater than the time needed to transmit a single character, concerning selected baud rate and
data bits.

Example:

Communication parameters are 1200 bps, 8 bits and no parity. Transmission of one character will
be approximately 8ms (start bit + 8 data bits + stop bit = 10bits; 10bits/1200bps=8.3ms). Character
timeout should be at least 10ms, although cca. 50ms is more safe, if response time is not critical.

To receive without timeout set char_tout to zero.

Message and char timeouts are independent. It is possible to use character timeout, and leave
message timeout disabled. The opposite is probably of little use.

A few examples will illustrate usage of the rx_start() function:

Receive continuously:

 rx_start(0,0,0,0,0);

Serial ports • Free-programmable mode

46

Receive message beginning with '>' and ending with CR character:

 rx_start('>','\r',0,0,0);

Receive message of exactly 12 characters:

 rx_start(0,0,12,0,0);

Infinitely wait for a first character, but stop receiving 250ms after message is received:

 rx_start(0,0,0,0,250);

Stop receiving 100ms after the last received character, or if no character is received in 5 seconds:

 rx_start(0,0,0,5000,100);

Any combination of start and stop criteria is allowed. To receive message up to 80 characters,
ending with Ctrl-Z (1A hex) with 10 seconds timeout:

 rx_start(0,'\1A',80,10000,100);

If given stop criteria for is not appropriate, determining the end of message may be done using
PLC program. Received message should be analyzed on the fly, and when stop condition is
satisfied, function rx_stop() may be used to stop receiving:

 rx_stop();

Function rx_count() returns the number of received characters. The function may be used whether
the receiving is active or not. Function rx_start() resets this number to zero.

 rx_count():int;

To check if the receiving is active, use function:

 rx_active():bit;

To check detailed receiving status, use function:

 rx_status():int;

Function rx_status() returns one of the following codes:

0 - receive active
1 - rx_stop() executed
2 - end character detected
3 - requested number of characters received
4 - timeout expired

Example:

Incoming message has no terminating character, and the length may vary. Message length is
coded binary in the fourth byte. To receive such messages use the following code:

 if rx_active() and rx_count()>=4 then
 if rx_count()>=rx_bufrd(3) then
 rx_stop();
 end_if;
 end_if;

Serial ports • Free-programmable mode

47

Parse received message

Functions for parsing a received message:

 rx_bufrd(position:int):int;

Returns single character from the given position of the receive buffer. Character is converted to
integer value 0..255.

 rx_strcmp(position:int, str:string):bit;

Compares receive buffer with a specified string. If string match, return true.

 rx_strpos(position:int, str:string):int;

Searches specified string in receive buffer. Search starts from given position. If the string is found,
function returns position of the first matching character, otherwise return value is -1.

 rx_strtoi(position:int):int;

Returns value of decimal number starting at given position. If character at specified position is
space, next character is taken until digit is found. Conversion continues until the first non-digit
character is encountered.

 rx_strtol(position:int):long;

Returns value of decimal number starting at given position. If character at a specified position is
space, it is skipped until digit is found. Conversion continues until first non-digit is encountered.

 rx_strtor(position:int):real;

Returns real value of decimal number starting from the given position. If character at a specified
position is space, the next character is taken until the number is found. Conversion continues until
the first non-digit character is encountered.

Example:

Communication is used to set the parameters of the current PLC program. Message may contain
keywords (OPEN, CLOSE) or set values (TEMP=25, CYCLE=100), separated by spaces.
Incoming message may contain request to set one or more parameters.

 if rx_strpos(0,'OPEN')<>-1 then
 main_valve=1;
 end_if;

 if rx_strpos(0,'CLOSE')<>-1 then
 main_valve=0;
 end_if;

 position=rx_strpos(0,'TEMP=');
 if position<>-1 then
 set_point=rx_strtoi(position+5);
 end_if;

 position=rx_strpos(0,'CYCLE=');
 if position<>-1 then
 cycle_timer.pt=rx_strtol(position+6);
 end_if;

High speed counter • General

48

HHiigghh ssppeeeedd ccoouunntteerr
GGeenneerraall

High-speed counter (HSC) is a hardware device capable of counting external pulses from an
encoder in both directions. The counter is 32-bit signed register.

0 1000 2000-1000-2000

Counter input may be one phase, usually called A, or two phase, usually called AB. Z stands for
additional zero input, usually used to determine absolute position of the controlled device.

Several counting modes are available:

None high-speed counter disabled

Z only high-speed counter disabled, zero input used as interrupt input

A/AB x1 one-phase or two-phase counting, single precision

A/AB+Z x1 one-phase or two-phase counting, single precision, zero input active

AB x4 two-phase quad-precision glitch-removal counting

AB+Z x4 two-phase quad-precision glitch-removal counting, zero input active

To set counting mode open Kernel Maintenance dialog, load kernel.bin, choose desired mode and
send the kernel to CyBro.

One phase counting

Counting in a single direction. Only a single phase input (A) is used.

21 3 4

A

Counter is incremented at the rising edge.

Counting direction may be determined by the state of the B input. If B=0, counter counts forward,
and if B=1, it counts backward.

High speed counter • General

49

Two phase counting, single precision

Counting both up and down. Two-phase inputs (A and B) are used.

2

2

1

1

3

3

4

A

B

Counter is advanced or retarded at rising edge of A input. Counting resolution is equal to encoder
resolution, each encoder pulse increments (or decrements) counter by 1.

Shaft vibration or electromagnetic noise may result in false counting.

Two phase counting, quad-precision

Counting both up and down. Two-phase inputs (A and B) are used. Counter is incremented or
decremented at each edge of A and B inputs. Counting resolution is four times the encoder
resolution, so each encoder pulse increments (or decrements) counter by four. 500 pulses per
rotation encoder will actually increment counter by 2000.

1

1

x

0

2

2

3

3

4

4

5

5

6

6

7 x

x

A

B

x - no change

Quad-precision mode also yields glitch removal and ±1 pulse removal, eliminating improper
counting caused by shaft vibration or electromagnetic noise.

High-speed counter and Com2 serial port can not be used at the same time. Function hsc_start()
will interfere with COM2 serial communication.

After the power-up, counter value is undetermined.

If HSC is not used, high speed inputs A and B may be used as standard binary inputs.

For connections and technical specifications of HSC, please check the hardware manual.

High speed counter • High speed counting

50

HHiigghh ssppeeeedd ccoouunnttiinngg

By default, the high-speed counter is stopped. To start counting use function hsc_start().

 hsc_start(); // start high-speed counter

To stop counting use function hsc_stop().

 hsc_stop(); // stop high-speed counter

To determine if HSC is stopped or started, use function hsc_active(). If HSC is started, hsc_active()
returns true, otherwise returns false.

 if hsc_active() then // check if high-speed counter is running
 activate_drive();
 end_if;

To read the current position of high-speed counter use function hsc_read(). Reading is possible no
matter if the counter is active or not. Counter value type is longint, and may be stored in a variable
of the same type.

 current_position:=hsc_read();

To set the counter to the desired value use function hsc_write(). Usually this is performed only
when the counter is stopped, but it is possible to write a new value even if the counter is active and
running.

 hsc_write(12000);

As an example, the following line increments the counter by 500 counts.

 hsc_write(hsc_read()+500);

HHiigghh ssppeeeedd aaccttiioonn

High-speed counting is usually used for a precise motion control. The following example shows
how to stop the motor connected to qx000 output, when the counter reaches zero (downward
counting).

 if hsc_read()<=0 then
 qx000:=0;
 end_if;

Problem that might arise here is the unpredictable response time. If current scan time is 5ms,
response time may be anywhere between 0ms and 10ms. For a speed of 1m/s that induces
inaccuracy of 10 millimeters.

To prevent this, high speed counter has a hardware capable of performing a very fast action when
counter reaches zero. Action is defined as setting or resetting a single binary output. To perform
task as in the last example, execute the following line:

 hsc_set_action(0,qx000);

The function hsc_set_action() initiates action. When counter reaches zero, the output qx000 will be
deactivated. Also, it is possible to set action in the opposite direction, to activate the output. See
example:

 hsc_set_action(1,brake_out);

When counter reaches zero, brakes will be activated.

High speed counter • High speed action

51

Action should be initiated only once, so the typical code for activating action is:

 if fp(start_key) then
 hsc_write(300000);
 hsc_set_action(0,qx000);
 hsc_start();
 qx000:=1; // start motor
 end_if;

Function hsc_reset_action() is provided to cancel initiated action. This is useful when something
unexpected happens, for example when alarm condition is detected.

 if alarm_condition then
 hsc_reset_action();
 hsc_stop();
 qx000:=0;
 qx001:=0;
 end_if;

Action is performed only once, when counter reaches zero for the first time. When counter reaches
zero again, no action will be performed. To check if the action is still pending, use function
hsc_check_action(). If action is initiated, hsc_check_action() returns true. After the action is
performed (or canceled), hsc_check_action() returns false.

It is not possible to initiate more then one action simultaneously. An attempt to do so will cause
incorrect operation. If multiple actions are needed, next action may be initiated after the first action
is performed. In applications that need multi-speed control, gear change may also be performed by
if..then instructions, rather than actions. Usually, this allows enough precision to slow down, with a
single high speed action used to stop accurately.

Next example shows a typical two-speed application. Two-speed motor is activated by two binary
outputs, qx000 and qx001. Low speed is activated by qx000, and high speed is activated by qx001.

 stop slow fast
qx000 0 1 1
qx001 0 0 1

The example requires motion of 6000 units. For the first 5000 units motor will run fast, then for the
next 1000 units it will run slowly, and then it will stop. Slowing down will allow accurate stop
position.

06000 1000

slow stopfast

High speed counter • High speed action

52

Program consists of three main states: stop, fast and slow. Transitions between states are defined
by start_key and position.

stop

fastslow

start_key

position=1000

position=0

The actual code may be written on both first or second manner, by the if..then instruction or by the
two consecutive actions.

The first way is somewhat shorter and easier to understand:

 if qx000=0 and qx001=0 then
 // currently stopped
 if fp(start_key) then
 // start full speed and set action to stop after 6000
 hsc_write(6000);
 hsc_set_action(0,qx000);
 hsc_start();
 qx000:=1;
 qx001:=1;
 end_if;
 elsif qx000=1 and qx001=1 then
 // currently fast
 if hsc_read()<=1000 then
 // slow down
 qx000:=1;
 qx001:=0;
 end_if;
 end_if;

The same functionality may be performed in another way, by the two sequentially activated actions.
The code is a bit longer and less understandable, but both actions will be performed very
accurately.

 if qx000=0 and qx001=0 then
 // currently stopped
 if fp(start_key) then
 // start full speed and set action to slow down after 5000
 hsc_write(5000);
 hsc_set_action(0,qx001);
 hsc_start();
 qx000:=1;
 qx001:=1;
 end_if;
 elsif qx000=1 and qx001=0 then
 // currently slow
 if not hsc_check_action() then
 // continue slow, increment counter by 1000 and stop on zero
 hsc_write(hsc_read()+1000);
 hsc_set_action(0,qx000);
 end_if;
 end_if;

High speed counter • Zero reset

53

ZZeerroo rreesseett

HSC types A/AB+Z x1 and AB+Z x4 implements an additional high speed input, used to accurately
determine absolute position.

Usual function of zero input is to reset high speed counter. By default this is disabled, and may be
enabled by the function hsc_enable_zero(). If enabled, each inactive-to-active transition on the
zero input will reset counter to zero.

To disable zero reset, use function hsc_disable_zero(). To check if the zero reset is enabled, use
function hsc_check_zero(). If the reset is enabled, hsc_check_zero() will return true, otherwise it
will return false.

Once activated, zero reset is active until explicitly deactivated by the hsc_disable_zero() function.

If zero reset is enabled and action is activated, action will be performed immediately after the
transition is detected.

ZZeerroo ddeetteecctt

The second way of utilizing zero input is provided by the two additional functions,
hsc_detect_zero() and hsc_read_zero().

Function hsc_detect_zero() indicates transition on the zero input. When inactive-to-active transition
on zero input is detected, hsc_detect_zero() will return true. Next consecutive calls will return false,
until the next zero transition is detected again.

That allows simple transition counting:

 zero_counter:=zero_counter + hsc_detect_zero();

When transition is detected, value of the high speed counter is also written to the zero detect
register, readable by the function hsc_read_zero(). Zero detect register is also 32 bits long.

Zero detect functions may be used only in A/AB+Z x1 and AB+Z x4 modes.

Real-time clock • General

54

RReeaall--ttiimmee cclloocckk
GGeenneerraall

Real-time clock (RTC) is a hardware clock/calendar device. It runs even when the power supply is
down. For technical specifications about accuracy and data retention time, please check the
hardware manual.

RTC may be synchronized to PC clock each time program is transferred to the PLC. To enable or
disable this option, clear check box Tools/Environment Options/Communication/Synchronize RTC
to PC Clock. RTC can also be adjusted from the PLC program with RTC I/O variables.

II//OO vvaarriiaabblleess

To read or set time of the RTC, use:

 rtc_hour:int;
 rtc_min:int;
 rtc_sec:int;

Value ranges for that variables are:

Hour 0..23
Min 0..59
Sec 0..59

To read or set date of the RTC, use:

 rtc_year:int;
 rtc_month:int;
 rtc_date:int;

Values are in the range:

Year 2000..2099
Month 1..12
Date 1..31

To read or set day of the week of the RTC, use:

 rtc_weekday:int;

0 - Sunday
1 - Monday
2 - Tuesday
3 - Wednesday
4 - Thursday
5 - Friday
6 - Saturday

To set real-time clock, write new time/date to I/O variables and set write request flag:

 rtc_write_req:=1;

An example that displays date/time on the operator panel and allows user to adjust them is
RtcClock.cyp. The program is located in the Project\Examples directory.

Networking • Ethernet connection

55

NNeettwwoorrkkiinngg
EEtthheerrnneett ccoonnnneeccttiioonn

CyBro may have a dynamic IP address obtained from DHCP server, or static IP address set with
Kernel Maintenance. To define static address, turn off checkbox Use DHCP, and enter IP address,
Subnet mask, Gateway, and DNS server. DNS server is needed when push to domain name is
used, push to IP address needs no DNS.

After power-on, static IP address is available immediately. Dynamic address needs 3-5 seconds to
start in same network as last time, or 30-35 seconds in a new network. If DHCP server is not
available, CyBro will have no IP address (0.0.0.0). In such case, Direct connection may be used to
obtain connection.

CyBro has a standard RJ-45 UTP connector. Baudrate is 10/100M, autodetected.

8-wire patch cable 8-wire crossover cable

Connection cable may be patch cable or crossover cable. Cable type is detected automatically.

CyBro has 6-byte MAC address in form 00-CB-00-xx-xx-xx, where last three bytes are serial
number (NAD). For example, CyBro 6512 (001970h) has MAC address 00-CB-00-00-19-70.

Networking • Connection options

56

CCoonnnneeccttiioonn ooppttiioonnss

• Direct connection
• Local area network
• Wide area network (specific) - individual address for each controller, stored with project
• Wide area network (common) - one common address for all controllers, stored in registry

When computer has two or more network adapters, the right one should be selected manually.

Transaction id adds an unique id to each request/answer message pair, avoiding trouble with
delayed messages. It can't be used when A-bus protection (password) is active.

Recommended settings:

transaction id off transaction id on typical rountrip
extra timeout extra retries extra timeout extra retries

direct
connection 1ms - - - -

local
network
connection

2-3ms - - - -

internet
connection 50-100ms 1000ms 3x 200ms 5x

relay
connection 100-200ms 2000ms 3x 500ms 5x

HSDPA
connection 200-500ms 5000ms 5x 500ms 5-10x

GPRS
connection 500-1000ms 20000ms 10x 500-1000ms 5-10x

Transaction id is supported starting with kernel v2.6.4 and loader v2.6. Older kernel/loader will
result in no connection. If you have loader v2.5, turn transaction id off, send new kernel, then turn
transaction id on.

Networking • Connection options

57

1. Direct connection

This connection is used when only two devices, PC and CyBro, are connected. Communication is
using a limited broadcast address (255.255.255.255:65535).

PC needs a few minutes to set autoconfiguration address (169.254.x.x), in that period connection
is not possible.

Direct connection may not work in a local network, because limited broadcast is generally ignored
by routers.

2. Local area connection

This is a typical setup for a small home/office network. All devices belong to same subnet. IP
address may be dynamic (using DHCP server), or static.

CyPro will detect each IP address automatically, using direct broadcast (192.168.0.255) as first
message.

3. Wide area connection using static IP or DynDNS

This connection provides programming and monitoring over the Internet.

1. CyPro Set Ethernet connection to wide area network, enter router b WAN address
(85.10.5.58) or domain name into Address field. If needed, use Extra timeout,
Extra retries and Transaction id options.

Networking • Connection options

58

2. Router a No special settings needed.

3. Router b Forward UDP port 8442 to CyBro:

 If more than one CyBro is in the local network, one solution may be to assign
port 8442 to broadcast address (e.g. 192.168.0.255), but some routers will not
support this.

4. CyBro No special settings needed. Either DHCP or static IP may be used.

In a small home/office network connected using ADSL, fixed IP address may not be available, so
dynamic DNS service may be used.

5. DNS service Register to a dynamic DNS service, such as www.dyndns.com. Choose a
domain. Some domains (e.g. xxx.getmyip.com) are available free of charge.

6. DNS client Configure a dynamic DNS client on a router b:

Networking • Connection options

59

If router has no DynDNS support, install update client on a local PC. If firewall is active, allow
outgoing traffic and open UDP port 8442 for incoming connections.

When connection is made, remote operation is same as in a local network. Hardware autodetect,
program send, on-line monitor, kernel maintenance - all functions are available.

4. Wide area connection using relay server

This connection provides programming and monitoring over the Internet, using relay server as
middle-point. Relay function is implemented in CyBroWebScada v1.1.1.

1. CyBro Configure push message to relay server (e.g. www.solar-cybro.com).

2. CyPro Set connection to Wide area network (common), enter address of relay server
(e.g. www.solar-cybro.com), and press "Copy session ID". It is recommended to
use Extra timeout, Extra retries and Transaction id options.

3. Server Enable relay, Set new session id and paste your id.

Use Ping command to check connection between server and CyBro.

Networking • Ethernet sockets

60

EEtthheerrnneett ssoocckkeettss

Socket are used for CyBro-CyBro communication. User has to define a list of variables on both
sides, and select mode of communication. Four modes are available:

1. Periodic 1s

sock_var

sock_var

sock_var

1s

Socket is transmitted periodically, once in a second.

2. Periodic 10s

sock_var

sock_var

sock_var

10s

Socket is transmitted periodically, once in 10 seconds.

3. On-request

sock_req

sock_var

sock_var

set by plc program

clear by kernel

Socket is transmitted on request.

Transmission begins when plc program set the request bit. Kernel responds by clearing the
request and sending the socket.

Request bit is the first bit variable in the socket. By convention, request bit is always sent as 1.
Received socket will not cause retransmition. Request is automatically cleared after the scan.

To trigger transmission by an external device (e.g. another CyBro), use a second socket. Request
variable can not be common, because it is automatically cleared after reception.

Networking • Socket examples

61

4. On-change

sock_var

sock_var

sock_var

Socket is transmitted each time an socket variable is changed. Received socket will not cause
retransmition.

Sockets are transmitted only when plc is running.

SSoocckkeett eexxaammpplleess

Event-driven action

On-request output socket may be used to send a single event to the network. Each controller may
trigger the event, each one will receive the event, and the request will reset automatically. Number
of controllers is not limited.

The example shows an event to turn all lights off.

if key pressed
 req:=1

if key pressed
 req:=1

if req=1 then
 turn lights off

if req=1 then
 turn lights off

if req=1 then
 send socket
 req:=0

if req=1 then
 don't resend
 req:=0

plc program

kernel

req=1

socket
on-request

Each CyBro may have the similar program, although local i/o assignment may not be the same.
Program structure is simple because request handling is fully automatic - once activated, network
take care first to spread the request, and then to reset it.

Synchronized value

On-change output socket may be used to synchronize a value common for multiple controllers.
Each controller may modify the value, and each one will receive the last modified value. Number of
controllers is not limited.

Networking • MODBUS connection

62

The example shows a common lightness setting (0-100%) in a large hall.

if key pressed
 light_level++

if key pressed
 light_level++

output:=light_level

output:=light_level

if light_level<>last
 send socket

if light_level<>last
 don't resend

plc program

kernel

light_level

socket
on-change

Each CyBro has the same program, although local i/o assignment may be different. Because of
automatic synchronization, program structure is very simple.

MMOODDBBUUSS ccoonnnneeccttiioonn

Modbus is a serial communication protocol published by Modicon in 1979 for use with
programmable logic controllers (PLCs). It has become a de facto standard communication protocol
in industry, and is now the most commonly available means of connecting industrial electronic
devices. Modbus allows for communication between many devices connected to the same
network.

CyBro supports:

• Modbus RTU slave (232/485)
• Modbus TCP slave (Ethernet)

Modbus data model describes how modbus coils and registers are translated to CyBro memory.

modbus modbus modbus modbuscybro cybro

array array

cybro cybro

entire plc + sequential array + sequential array + random selected + random

Appropriate model allows easy handling of modbus devices.

If Modbus master is needed, use InverterModbusDemo.cyp from \Examples.

Additional features • NAD alias

63

AAddddiittiioonnaall ffeeaattuurreess
NNAADD aalliiaass

Each Cybro unit has its unique serial number, used also as communication address (NAD). Serial
number is permanent and can not be changed.

NAD alias is a second communication address configurable by user. Once set, alias functions as
the original NAD. CyBro with alias may be addressed with both serial number and alias.

4001

4002

4003
4004

broken

4005

4006

4547
replacement

NAD alias = 4004

To enter NAD alias, open Kernel Maintenance, enter desired alias address and send the kernel.

To determine actual addres, open Get PLC Info dialog box. Loader tab shows the original NAD
(serial number) and Kernel tab shows alias.

Additional features • Password protection

64

PPaasssswwoorrdd pprrootteeccttiioonn

Begining with version 2.5.0, CyBro has option to restrict access with password. Depending on
selected protection level, protection may extend to a plc program, variables and sockets. For
example, if protection level is Program protected, anybody can freely read and write variables, but
will need password to send a new program.

Password protection is effective only for Ethernet. Serial access is not restricted, even if CyBro is
configured for a full protection.

Password may contain any combination of letters and numbers of reasonable length. It is case
sensitive. Don't use spaces, special symbols or national characters.

Password is common for all programs in project, it is not possible to define a separate password
for each CyBro. Password stored in project file is not secure, so keep project safe.

When password is active, communication option Transaction id can not be used.

To send a new password, use command Erase protected program.

Additional features • Command-line options

65

CCoommmmaanndd--lliinnee ooppttiioonnss

Command-line options may be specified upon starting CyPro. They are used to automatically
perform some tasks, such as sending a program to a connected PLC.

Using command-line options, CyPro may be used as external compiler for a shell application.

cypro /OPEN myfile.cyp /START

myfile.cypCyPro.log

CyPro

CyBro

SCADA

There are two general styles to use command line options:

cypro.exe filename.cyp
cypro.exe /OPTION1 /OPTION2 /OPTION3…

First style is used by operating system, when user double-clicks a cyp file.

Command-line options are:

/NEW [filename.cyp] Create a new project. Filename is optional. If omitted, "untitled" is
used instead.

/OPEN filename.cyp Open existing project with specified filename.

/SAVE Save project.

/SAVEAS filename.cyp Save project under specified name.

/EXIT Exit CyPro.

/NAD number Select program. If specified NAD exists, that program will be
selected, otherwise NAD is appended to current program.

/AUTODETECT Hardware autodetect.

/START Compile, send (only if different) and run.

/STARTALL Start all programs in project.

/STOP Stop current program.

/SEND Send current program.

/HIDDEN Silent operation, do not show any window or dialog box.

Filename may be just a name or a full path. If filename contain spaces, quotas should be used
("my file.cyp"). If an operation requires user input to continue execution, default option will be used

Additional features • Command-line options

66

automatically. For example, when autodetect asks a network address, default address (zero) will
be used automatically.

When started with command-line options, CyPro creates log file "CyPro.log" that contains all given
commands and their results (success or failure). Log file is saved in CyPro directory (c:\Program
Files\CyPro\CyPro.log).

If /HIDDEN mode is used, CyPro will automatically exit after last command is executed.

When using command-line options, it is advisable to turn on checkbox Allow multiple instances in
Environment Options. If only a single instance is allowed, and CyPro is already running, command-
line requests will be proceeded to the active copy.

Examples:

cypro.exe myfile.cyp

Start CyPro and open project myfile.cyp.

cypro.exe "c:\My Documents\myfile.cyp"

Start CyPro and open project myfile.cyp in specified directory. As path may contain spaces, quotas
are required.

cypro.exe /HIDDEN /OPEN "myfile.cyp" /START /EXIT

Start CyPro, open an existing project (myfile.cyp), start PLC (compile, send & run) and exit.
Operation is hidden, no window or dialog box will appear. Possible errors are saved in CyPro.log.

cypro.exe /HIDDEN /NEW /AUTODETECT /SAVEAS "myfile.cyp" /EXIT

Start CyPro, open a new project, start Autodetect, save as myfile.cyp and exit. Operation is hidden,
no window or dialog box will appear. Possible errors are saved in CyPro.log.

cypro.exe /HIDDEN /NEW /NAD 4000 /AUTODETECT /SAVEAS "myfile.cyp" /EXIT

Start CyPro, open a new project, add new NAD, start Autodetect to detect connected IEX-2
modules, save as myfile.cyp and exit. Operation is invisible, no window or dialog box appears.
Possible errors are saved in CyPro.log.

cypro.exe /HIDDEN /OPEN "myfile.cyp" /AUTODETECT /START /EXIT

Start CyPro, open an existing project (myfile.cyp), start Autodetect (assuming the project has no
defined hardware setup and network address, like CyPro examples), start PLC (compile, send &
run) and exit. Original file will remain unchanged. Operation is invisible, no window or dialog box
will appear. Possible errors are saved in CyPro.log.

CyBro tutorial • Your first CyBro program

67

CCyyBBrroo ttuuttoorriiaall
YYoouurr ffiirrsstt CCyyBBrroo pprrooggrraamm

Step one: define problem

In the first example, we will take a very simple task: a timer activated by a key press. By pressing a
key, timer will turn the output on for a predefined time period, about 5 seconds.

op00_key_f

cybro_qx00
5s

A key for activating the timer can be any binary input, but it is simpler to use one of the display
keys. The output is the first binary output, cybro_qx00.

timer 5s
op00_key_f

cybro_qx00

Step two: define hardware

Connect CyBro and PC to local network.

Start CyPro and select File/New Project to start a new project. Open Hardware Setup and start
Autodetect. Select your CyBro from the list, and press OK.

Autodetect will list connected IEX-2 modules. In our example, it will be CyBro and OP-2.

To accept autodetected hardware press OK.

Step three: allocate variables

Our simple project needs one variable of timer type.

CyBro tutorial • Your first CyBro program

68

Start Allocation Editor, and press Insert to Insert New Variable. Dialog box will appear:

Enter name, choose type, adjust preset value, choose pulse type, select 100ms base and press
OK.

Step four: write code

PLC code should connect the timer input to the key, and the timer output to the output relay. This
can be done by:

 tim0.in:=op00_key_f;
 cybro_qx00:=tim.q;

Step five: send and run

To compile and transfer the program to the CyBro, press Start button. Status line indicator will
show that the program is running.

CyBro tutorial • Your first CyBro program

69

To check operation, start Variable Monitor, add allocated variables, and press "F" shortly.

Step six: new frontiers

Another task is to make timer adjustable.

A way to accomplish this is the mask system. Start Mask Editor and press Add to create a new
mask. Enter caption and unit field texts. Other fields may retain default values.

Switch to Variable tab, enter tim0.pt variable and adjust boundaries. Note that timer resolution is
100ms, so one decimal place is required to indicate seconds.

CyBro tutorial • Your first CyBro program

70

Press OK. Set entry point to mask01 and press OK again.

Press Start button. The program is automatically compiled, transferred and started.

To adjust timer value, press the P key, adjust with up and dn and exit with P again.

To activate timer press the F key.

Appendix • Data types summary

71

AAppppeennddiixx
DDaattaa ttyyppeess ssuummmmaarryy

Elementary

type width range
bit 1 0..1

word 16 -
integer 16 -32768..32767

long 32 -2147483648..2147483647
real 32 -3.4x1038..3.4x1038

Input/Output

type width equal type description
in bit 1 bit binary input

out bit 1 bit binary output
in word 16 integer analog input

out word 16 integer analog output

Timer

field type direction description
in bit input input
pt long input preset time
et long output elapsed time
q bit output output

Appendix • Data types summary

72

Internal variables

name type direction description
first_scan bit read only active during first scan only
scan_overrun bit read only scan timeout occurred
clock_10ms bit read only 10ms clock
clock_100ms bit read only 100ms clock
clock_1s bit read only 1s clock
clock_10s bit read_only 10s clock
clock_1min bit read only 1min clock
retentive_fail bit read/write indicates that retentive memory has failed
cybro_outputs_off bit read/write if active, all CyBro binary outputs goes off
disconnect_inputs bit read/write if active, inputs may be manipulated manually
no_input_filter bit read/write if active, local 5ms input filter is turned off
rtc_read_req bit read/write request read from RTC
rtc_write_req bit read/write request writing to RTC
ee_read_req bit read/write set to read all EE variables from EEPROM
ee_write_req bit read/write set to write all EE variables to EEPROM
ee_write_magic int read/write set to 31415 to enable writing to EEPROM
scan_time int read only last scan execution time [ms]
scan_time_max int read only max. scan execution time encountered [ms]
scan_frequency int read only number of scans per second
rtc_sec int read/write RTC second
rtc_min int read/write RTC minute
rtc_hour int read/write RTC hour
rtc_weekday int read/write RTC weekday
rtc_date int read/write RTC date
rtc_month int read/write RTC month
rtc_year int read/write RTC year

Appendix • Instruction list summary

73

IInnssttrruuccttiioonn lliisstt ssuummmmaarryy

Instructions

Move

ld move variable or constant to accumulator
ldn move complement of variable to accumulator
st move accumulator to variable
stn move complement of accumulator to variable
set set accumulator or variable
setc if condition true set variable
res clear accumulator or variable
resc if condition true clear variable

Logic

cpl complement accumulator or variable
and logical and accumulator with variable or constant
andn logical and accumulator with complement of variable or constant
or logical or accumulator with variable or constant
orn logical or accumulator with complement of variable or constant
xor exclusive or accumulator with variable or constant
xorn exclusive or accumulator with complement of variable or constant
shl shift left accumulator, set LSB to zero
shr shift right accumulator, set MSB to zero
rol rotate left accumulator, copy MSB to LSB
ror rotate right accumulator, copy LSB to MSB
fp positive flank, 1 if low-to-high transition detected, 0 otherwise
fn negative flank, 1 if high-to-low transition detected, 0 otherwise

Arithmetic

neg change sign of accumulator
add add variable or constant to accumulator
sub subtract variable or constant from accumulator
mul multiply accumulator with variable or constant
div divide accumulator with variable or constant
mod remains of dividing accumulator with variable or constant

Compare

eq test if accumulator equal to value
ne test if accumulator not equal to value
gt test if accumulator greater then value
ge test if accumulator greater or equal value
lt test if accumulator lower then value
le test if accumulator lower or equal value

Branch

jmp label unconditional jump to position indicated by label
jmpc label jump if condition true
jmpnc label jump if condition not true
cal subroutine call subroutine
calc subroutine call subroutine if condition is true
calnc subroutine call subroutine if condition is not true

Appendix • Instruction list summary

74

Type conversions:

x-to-y convert acc from type x to type y (bit, word, integer, long, real)

Allowed type conversions

 bit word int long real
bit + + +
word + +
int + + +
long + + +
real + +

Allowed type combinations

 bit word int long real acc const var
ld + + + + + + +
ldn + +
st + + + + + +
stn + +
set + + +
setc + +
res + + +
resc + +
cpl + + + +
and + + + +
andn + + + +
or + + + +
orn + + + +
xor + + + +
xorn + + + +
shl + +
shr + +
rol + +
ror + +
fp + + +
fn + + +
neg + + + +
add + + + + +
sub + + + + +
mul + + + + +
div + + + + +
mod + + + +
eq + + + + + + +
ne + + + + + + +
gt + + + + +
ge + + + + +
lt + + + + +
le + + + + +
jmp +
jmpc +
jmpnc +
cal +
calc +
calnc +
x-to-y + + + + + +
dprnx + + + + +

Appendix • Structured text summary

75

SSttrruuccttuurreedd tteexxtt ssuummmmaarryy

Operators

operator alias unary binary bit word int long real result
+ • • • • same
- • • • • • same
∗ • • • • same
/ • • • • same

mod % • • • same
not ! • • • same
and & • • • same
or | • • • same
xor ^ • • • same
= == • • • • • • bit

<> != • • • • • • bit
< • • • • bit

<= • • • • bit
> • • • • bit

>= • • • • bit
:= • • • • • • same

Flow control

if...then...else

 if <expression> then
 <statements>;
 elsif <expression> then
 <statements>;
 else
 <statements>;
 end_if;

case...of

 case <expression> of
 <value1>: <statements>;
 <value2>: <statements>;
 ...
 <valuen>: <statements>;
 else
 <statements>;
 end_case;

for...do

 for <var>:=<expression> to <expression> do
 <statements>;
 end_for;

while...do

 while <expression> do
 <statements>;
 end_while;

Appendix • Structured text summary

76

Edge detect functions

positive edge detect

 fp(b:bit):bit;

negative edge detect

 fn(b:bit):bit;

Cast functions

 int(expression):int;
 word(expression):word;
 long(expression):long;
 real(expression):real;

Display functions

clear display

 dclr(slot:int);

print ASCII character

 dprnc(slot:int, x:int, y:int, c:char);

print string

 dprns(slot:int, x:int, y:int, str:string);

print binary value

 dprnb(slot:int, x:int, y:int, c0:char, c1:char, value:bit);

print integer value

 dprni(slot:int, x:int, y:int, width:int, zeroblank:bit, value:int);

print long value

 dprnl(slot:int, x:int, y:int, width:int, zeroblank:bit, value:long);

print real value

 dprnr(slot:int, x:int, y:int, width:int, dec:int, value:real);

Legend:

slot.............. slot number
x.................. x position (0-left)
y.................. y position (0-top)
width print width
zeroblank.... suppress leading zero (0-no, 1-yes)
dec.............. decimal places
c.................. single character
str array of characters
value........... value to print

Appendix • Structured text summary

77

Com2 functions

port selection

 com_select(port:int); // 1-COM1, 2-COM2

transmit

 tx_start(char_num:int);
 tx_stop();
 tx_count():int;
 tx_active():bit;

receive

 rx_start(beg_ch:char, end_ch:char, len:int, msg_tout:int, char_tout:int);
 rx_stop();
 rx_count():int;
 rx_active():bit;
 rx_status():int;

parse received message

 rx_bufrd(position:int):int;
 rx_bufwr(data:int, position:int):int;
 tx_bufrd(position:int):int;
 tx_bufwr(data:int, position:int):int;
 rx_strcmp(position:int, str:string):bit;
 rx_strpos(position:int, str:string):int;
 rx_strtoi(position:int):int;
 rx_strtol(position:int):long;
 rx_strtor(position:int):real;

High speed counter functions

start/stop counting

 hsc_start();
 hsc_stop();
 hsc_active():bit;

read/write counter value

 hsc_read():long;
 hsc_write(position:long);

set/reset high speed action

 hsc_set_action(action:bit, variable:bit);
 hsc_reset_action();
 hsc_check_action():bit;

enable/disable counter reset on zero input

 hsc_enable_zero();
 hsc_disable_zero();
 hsc_check_zero():bit;

detect and read position of zero input

 hsc_detect_zero():bit;
 hsc_read_zero():long;

Appendix • Structured text summary

78

Special functions

read/write current ip address

 get_ip():long;
 set_ip(ip_address:long, subnet:long, gateway:long, dns_server:long);

read current address (equal to serial if no alias, otherwise equal to alias)

 get_nad():long;

read unique serial number

 get_serial():long;

Appendix • Character set

79

CChhaarraacctteerr sseett

To enter characters not supported by your keyboard, press Alt key, on the numeric keypad type
character code preceded by 0, and release Alt. Character code should be expressed in decimal.
Num lock should be on.

Example:

According to character table, symbol "°" (degrees centigrade) has hex code DFh. Converting value
to decimal gives 223 (DFh = D0h + 0Fh = 16*13 + 15 = 223).

To enter centigrade symbol:

• make sure num lock is on
• press Alt
• press consecutively 0223
• release Alt

Because of different character sets, character "ß" appears instead of "°", but it will show correctly
on LCD.

 dprns(1,0,0,'T=xx.xßC');
 dprnr(1,2,0,4,1,iw000*0.1);

T .= 72 °4 C

Codes 0..7 are reserved for bar-graph or Latin-2 characters.

Appendix • Keyboard shortcuts

80

KKeeyybbooaarrdd sshhoorrttccuuttss

Common

F1 Help
F2 Syntax check

F5 Hardware setup
F6 Allocation editor
F7 Mask editor
F8 Socket editor

F9 Send
F10 Variable monitor
Ctrl-F10 Data manager
F11 Start PLC program
F12 Stop PLC program

Ctrl-O Open
Ctrl-S Save
Ctrl-Shift-S Save As
Ctrl-P Print project

Ctrl-D Connect/disconnect communication port
Ctrl-L Select NAD

Ins Insert (context sensitive)
Delete Delete (context sensitive)
Ctrl-Up Move item up
Ctrl-Dn Move item down

Ctrl-Tab Next window
Ctrl-Shift-Tab Previous window
Ctrl-F4 Close window
Alt-F4 Exit program

Text editor

Ctrl-space Insert variable or function

Ctrl-Z Alt-Backspace Undo
Shift-Ctrl-Z Redo

Ctrl-X Shift-Del Cut
Ctrl-C Ctrl-Insert Copy
Ctrl-V Shift-Insert Paste

Ctrl-A Select all

Ctrl-F Find
F3 Find next
Ctrl-R Replace

Ctrl-G Go to line

Ctrl-Shift-I Indent block
Ctrl-Shift-U Unindent block
Ctrl-Shift-C Comment/uncomment selection

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

